Math, asked by sahbaz5863, 11 months ago

[tex] \left |\begin{array}{ccc} 1&x&x³ \\1 &y&y³ \\ 1&z&z ³\end{array}\right | =(x-y)(y-z)(z-x)(x+y+z),prove it using theorems [\tex]

Answers

Answered by hukam0685
0

Step-by-step explanation:

 \left|</p><p>\begin {array}{ccc}</p><p> 1&amp; x&amp; x^3 \\</p><p>1 &amp; y&amp; y^3 \\</p><p> 1&amp; z&amp; z ^3\end{array}</p><p>\right| =(x-y)(y-z)(z-x)(x+y+z)

To prove it using theorems,

R1-> R1-R2

R2-> R2-R3

 \left|</p><p>\begin {array}{ccc}</p><p> 1-1&amp; x-y&amp; x^3-y^3\\</p><p>1-1 &amp; y-z&amp; y^3-z ^3 \\</p><p> 1&amp; z&amp; z ^3\end{array}</p><p>\right|

 \left|</p><p>\begin {array}{ccc}</p><p> 0&amp; x-y&amp; (x-y)(x^2+xy+y^2)\\</p><p>0 &amp; y-z&amp; (y-z)(y^2+yz+z ^2 \\</p><p> 1&amp; z&amp; z ^3\end{array}</p><p>\right|

take common (x-y) from R1 and (y-z) from R2

(x-y)(y-z) \left|</p><p>\begin {array}{ccc}</p><p> 0&amp; 1&amp; (x^2+xy+y^2)\\</p><p>0 &amp; 1&amp; (y^2+yz+z ^2)\\</p><p> 1&amp; z&amp; z ^3\end{array}</p><p>\right|

R1->R1-R2

(x-y)(y-z) \left|</p><p>\begin {array}{ccc}</p><p> 0&amp; 1-1&amp; (x^2+xy+y^2)-(y^2+yz+z ^2)\\</p><p>0 &amp; 1&amp; (y^2+yz+z ^2) \\</p><p> 1&amp; z&amp; z ^3\end{array}</p><p>\right|

(x-y)(y-z)\left|</p><p>\begin {array}{ccc}</p><p> 0&amp; 0&amp; (x^2+xy-yz-z ^2)\\</p><p>0 &amp; 1&amp; (y^2+yz+z ^2) \\</p><p> 1&amp; z&amp; z ^3\end{array}</p><p>\right|

Expand the determinant along column C1

(x^2+xy-yz-z ^2)\\\\x^2-z^2+xy-yz\\\\(x+z)(x-z)+y(x-z)\\\\(x-z)(x+y+z)\\\\

Now multiply this to the terms taken out common earlier

(x-y)(y-z)(z-x)(x+y+z)\\\\

= RHS

hence proved

Answered by MaheswariS
0

Answer:

I have applied factor theorem to prove this problem

Let\:\triangle=\left|\begin{array}{ccc}1&amp;x&amp;x^3\\1&amp;y&amp;y^3\\1&amp;z&amp;z^3\end{array}\right|

put x=y

Let\:\triangle=\left|\begin{array}{ccc}1&amp;y&amp;y^3\\1&amp;y&amp;y^3\\1&amp;z&amp;z^3\end{array}\right|

\text{since }R_1\text{ and }R_2\text{ are identical, }\triangle=0

\therefore\text{ (x-y) is a factor of }\triangle

\text{similarly, (y-z) and (z-x) are factors of }\triangle

\text{Hence, (x-y)(y-z)(z-x) is a factor of }\triangle

\text{Its degree is 3}

\text{Product of leading diagonal elements = }1.y.z^3

\text{Its degree is 4}

\text{Difference, m=4-3=1}

By symmetric and cyclic property, the remaining factor must be k(x+y+z)

\implies\:\triangle=\left|\begin{array}{ccc}1&amp;x&amp;x^3\\1&amp;y&amp;y^3\\1&amp;z&amp;z^3\end{array}\right|=k(x-y)(y-z)(z-x)(x+y+z)

put x=0, y=1 and z=2

\triangle=\left|\begin{array}{ccc}1&amp;0&amp;0\\1&amp;1&amp;1\\1&amp;2&amp;8\end{array}\right|=k(0-1)(1-2)(2-0)(0+1+2)

\implies\:1(8-2)=k(6)

\implies\:6=k(6)

\implies\:k=1

\implies\boxed{\bf\:\triangle=\left|\begin{array}{ccc}1&amp;x&amp;x^3\\1&amp;y&amp;y^3\\1&amp;z&amp;z^3\end{array}\right|=(x-y)(y-z)(z-x)(x+y+z)}

Similar questions