Math, asked by rafsi8910, 1 year ago

[tex] \left |\begin{array}{ccc} x&5&9 \\ 16&3x+8&36 \\ 3& 1&7\end{array}\right | =0,Find the Solution set. [\tex]

Answers

Answered by hukam0685
0

Step-by-step explanation:

 \left |\begin{array}{ccc} x&5&9 \\ 16&3x+8&36 \\ 3& 1&7\end{array}\right | =0

For simplification ,R1->R1-5R3

 \left |\begin{array}{ccc} x-15&5-5&9-35 \\ 16&3x+8&36 \\ 3& 1&7\end{array}\right | =0

 \left |\begin{array}{ccc} x-15&0&-26\\ 16&3x+8&36 \\ 3& 1&7\end{array}\right | =0

C3->C3-7C2

 \left |\begin{array}{ccc} x-15&0&-26-0\\ 16&3x+8&36-21x-56 \\ 3& 1&7-7\end{array}\right | =0

 \left |\begin{array}{ccc} x-15&0&-26\\ 16&3x+8&-21x-20 \\ 3& 1&0\end{array}\right | =0

expand the determinant along R1

(x - 15)(+21x+20)   - 26(16 - 9x - 24) = 0 \\  \\ 21 {x}^{2}  + 20x - 315x - 300 - 26(-8 - 9x) = 0 \\  \\ 21 {x}^{2}  + 20x - 315x - 300 +208+ 234x= 0 \\  \\ 21 {x}^{2}  - 61x - 92 = 0 \\  \\ x_{1,2} =  \frac{ 61± \sqrt{4825} }{42}  \\  \\ x_{1,2} =  \frac{ 61±  5\sqrt{193} }{42}  \\  \\ x_{1}=\frac{ 61+  5\sqrt{193} }{42}\\\\x_{2}=\frac{ 61-  5\sqrt{193} }{42}\\\\

Hope it helps you

Similar questions