Math, asked by Anonymous, 3 months ago

\left(sec\: \phi - tan\: \phi\right)^{2} = \left(\dfrac{1-sin\: \phi}{1+sin\: \phi}\right)

Answers

Answered by Anonymous
326

To Prove :-

  • \sf \left(sec\: \phi - tan\: \phi\right)^{2} = \left(\dfrac{1-sin\: \phi}{1+sin\: \phi}\right)

Proof :-

\textsf{LHS\: =}\\\\

\sf \red {\left(sec\: \phi - tan\: \phi\right)^{2}}\\\\

\sf :\implies \left(\dfrac{1}{cos\: \phi} - \dfrac{sin\: \phi}{cos\: \phi}\right)^{2}\\\\

\sf :\implies \left(\dfrac{1-sin\: \phi}{cos\: \phi}\right)^{2}\\\\

\sf :\implies \left(\dfrac{\left(1-sin\: \phi\right)^{2}}{cos^{2} \: \phi} \right)\\\\

\sf :\implies \left(\dfrac{\left(1-sin\: \phi\right)^{2}}{\left(1-sin^{2} \: \phi\right)} \right)\\\\

\sf :\implies 1-sin^{2} \: \phi = \left(1+sin\: \phi\right)\left(1-sin\: \phi\right)\\\\

\sf :\implies \left(\dfrac{\left(1-sin\: \phi\right)^{2}}{\left(1+sin\: \phi\right)\left(1-sin\: \phi\right)} \right)\\\\

\sf :\implies \left(\dfrac{\left(1-sin\: \phi\right)^{ \cancel{2}}}{\left(1+sin\: \phi\right) \cancel{\left(1-sin\: \phi\right)}} \right)\\\\

\sf :\implies \left(\dfrac{\left(1-sin\: \phi\right)}{\left(1+sin\: \phi\right)} \right)\\\\

\textsf { = \: RHS}\\\\

  • \mathsf {Hence\: Proved}\\

\sf \underline{\red { Need \: To \:Know :-}}\\

  • \: \mathsf{ sec\: \phi = \left(\dfrac{1}{cos\: \phi}\right)}

  •  \: \mathsf{tan\: \phi = \left(\dfrac{sin\: \phi}{cos\: \phi}\right)}

  • \: \mathsf{cos^{2}\: \phi + sin^{2}\: \phi= 1}

  • \sf \: cos^{2}\: \phi = 1-sin^{2}\: \phi\\\\
  • \mathsf{a^{2}-b^{2}= (a+b)(a-b)}\\\\
Answered by ItzZMasterMindAditya
17

\sf  \green{ \: \dfrac{a^m}{a^n} \:  =  \: a^{m-n}}

\sf \green { \:  a^m \times  a^n = a^{m+n}}

\sf  \green { \: (a^m)^{n}  = a^{mn}}\\\\

Similar questions