Math, asked by dhruv20333, 10 months ago


 Let \:  a   \: and \:  b \:  be  \: two  \: \\  roots  \: of \:  the  \: equation  \ \\  {x}^{2} +2x+2=0,  \: then \:  \\   {a}^{15}  +  {b}^{15}  \: is  \: equal  \: to
answer with solution plz

Answers

Answered by Siddharta7
2

Answer:

-256

Step-by-step explanation:

Given,

a and b are the two roots of the equation.

Equation is x² + 2x + 2 = 0

=> x² + 2x + 1 + 1 = 0

=> x² + 2x + 1 = -1

=> (x + 1)² = -1

=> (x + 1) = ± i

=> x = -1 ± i

∴ Roots are -1 + i and -1 - i

Thus,

a¹⁵ + b¹⁵

=> (-1 + i)¹⁵ + (-1 - i)¹⁵

=> -128 - 128i + -128 + 128i

=> -256

Hope it helps!

Answered by ItSdHrUvSiNgH
19

Step-by-step explanation:

\huge\bf{\mid{\overline{\underline{ANSWER:-}\mid}}}}

   \huge \bold{GIVEN:- }\\  \\ {x}^{2}  + 2x + 2 = 0 \huge{ [ }^{a}_b  \\  \\

 \huge\bold{TO FIND:-} \\ \\ {a}^{15} + {b}^{15} \\ \\

 {x}^{2}  + 2x + 2 = 0 \\  \\  {x}^{2} + 2x + 1 + 1 = 0 \\  \\ ( {(a + b)}^{2}   =  {a}^{2}  +  {b}^{2}  + 2ab ) \\  \\   \implies {(x + 1)}^{2}  =  - 1 \\  \\ We \:  \: know \:  \:  \sqrt{ - 1}  =   \iota \\  \\ \implies x + 1 =  \pm \:  \iota \\  \\ \implies x =  - 1 \pm \:  \iota  \\  \\   \boxed{a =  - 1 +  \iota \:  \:  \:  \: \:  \:  \:  b =  - 1 - \iota}

Comparing \:  \: with \:  \: a +  \iota  b \\  \\ a =  - 1 \:  \:  \: b =  \pm 1

r =  \sqrt{ {a}^{2}  +  {b}^{2} }  =  \sqrt{1 + 1}  =  \sqrt{2}

 Using \: \: complex \: \: numbers.. \\ \\ r [sin(\theta) + cos(\theta)] \\ \\ \implies  a = -1 + \iota = \sqrt{2} \times [ \cos (\frac{3 \pi}{4} ) + \iota \sin(\frac{3 \pi}{4})] \\ \\ \implies  b = -1 - \iota = \sqrt{2} \times [\cos (\frac{3 \pi}{4}  - \iota \sin(\frac{3 \pi}{4} ) \\ \\

 \implies {a}^{15} = {\sqrt{2}}^{15} \times { \cos (\frac{3 \pi}{4} ) + \iota \sin (\frac{3 \pi}{4}) }^{15} \\ \\ \implies {b}^{15} = {\sqrt{2}}^{15} \times { \cos (\frac{3 \pi}{4} ) + \iota \sin(\frac{3 \pi}{4}) }^{15} \\ \\  \implies  {a}^{15} + {b}^{15} = {\sqrt{2}}^{15} \times [ {\cos (\frac{3 \pi}{4}  \cancel{+ \iota \sin(\frac{3 \pi}{4})} }^{15} + \\ \\  { \cos (\frac{3 \pi}{4} ) \cancel{- \iota \sin(\frac{3 \pi}{4})} }^{15} \\ \\

 By \: \: De \: \:  Morgan's \: \:  Theorem, \\ \\ \implies {a}^{15} + {b}^{15} = {\sqrt{2}}^{15} \times [ 2 \cos(\frac{(3 \times 15) \pi}{4} \\ \\ \implies {a}^{15} + {b}^{15} = {\sqrt{2}}^{15} \times 2 \times \frac{ -1 }{\sqrt{2}} \\ \\ \implies {a}^{15} + {b}^{15} = 128 \times \cancel{\sqrt{2}} \times 2 \times \frac{-1}{\cancel{\sqrt{2}}} \\ \\ \huge\boxed{\implies - 256 }

Similar questions