
Answers
Answered by
2
Let α and β are roots of x² + px + 2 = 0 and 1/α , 1/β are the roots od 2x² - 2qx + 1 = 0
We have to find the value of (α + 1/β)(β + 1/α)(α - 1/α)(β - 1/β)
solution : α and β are roots of x² + px + 2 = 0
so, α + β = -p , αβ = 2
and 1/α and 1/β are roots of 2x² - 2qx + 1 =0
so, 1/α + 1/β = 2q/2 = q , 1/αβ = 1/2
now (α + 1/β)(β + 1/α)(α - 1/α)(β - 1/β)
= (αβ + 1 + 1 + 1/αβ)(αβ - α/β - β/α + 1/αβ)
= (2 + 2 + 1/2))(2 - α/β - β/α + 1/2)
= 9/2[5/2 - (α² + β²)/αβ ]
= 9/2 [5/2 - {(α + β)² - 2αβ}/αβ ]
= 9/2 [5/2 - {(-p)² - 2(2)}/2]
= 9/2 [5/2 - (p² - 4)/2 ]
= 9/4 (9 - p²)
Therefore the value of (α + 1/β)(β + 1/α)(α - 1/α)(β - 1/β) is 9/4(9 - p²)
Similar questions