Math, asked by Anonymous, 1 year ago

let \: f(x)
 =  \frac{1 -  \cos(4x) }{ {x}^{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x < 0

 = a \:  \:  \:  \:  \:  \:  \:  \ \:  \:  \:  \:  \:  \: \:  \:  \:  \:  x = 0
 =  \frac{ \sqrt{x} }{ \sqrt{16 +  \sqrt{x} }  - 4}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x > 0


Determine the value of 'a' if possible, so that the function is continuous at x = 0.



✔️✔️ quality answer needed✔️✔️

❌❌NO SPAMMING❌❌​

Answers

Answered by siddhartharao77
9

Answer:

a = 8

Step-by-step explanation:

(i) When x < 0: LHL

\lim_{x \to 0} \frac{1 - cos^4x}{x^2}

=&gt;\lim_{x \to 0} \frac{2sin^22x}{x^2}

=&gt;2{[\lim_{x \to 0} \frac{sin2x}{2}}]^2*\frac{4x^2}{x^2}

=&gt;2 * 1 * 4

=&gt;8

(ii) When x = 0:

Given, f(x) is continuous at x = 0.

f(0) = a = LHL

∴ a = 8

(iii) When x > 0: RHL

=\frac{\sqrt{x}}{\sqrt{16} + \sqrt{x}-4}

=\lim_{x \to 0} \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4} * \frac{\sqrt{16+\sqrt{x}}+4}{\sqrt{16+\sqrt{x}}+4}

=\lim_{x \to 0} \frac{\sqrt{x}(\sqrt{16+\sqrt{x}}+4)}{16+\sqrt{x}-16}

=\lim_{x \to 0} \frac{\sqrt{x}(\sqrt{16+\sqrt{x}}+4)}{\sqrt{x}}

=\lim_{x \to 0} \sqrt{16+\sqrt{x}+4}

=\sqrt{16} + 4

=8

From (i) & (ii) & (iii), we get

a = 8.

Hope it helps!


Anonymous: as always just ^^' brainly mathematician :)
siddhartharao77: Thank you so much
Anonymous: plss help
Anonymous: help needed. ..
Answered by Anonymous
5
ANSWER:--------------

=>2[lim⁡x<br />→[tex]0sin2x2]2∗4x2x2<br />=&gt;2{[\lim_{x \to 0} \frac{sin2x}{2}}]^2*\frac{4x^2}{x^2}=&gt;2[limx

02sin2x]2∗x24x2<br />=&gt;2∗1∗4=&gt;2 * 1*4<br />=&gt;2∗1∗4<br />=&gt;8=&gt;8=&gt;8

x = 0:

at x = 0.

f(0) = a = LHL

note here now

∴ a = 8

(x > 0: RHL

=x16+x−4=\frac{\sqrt{x}}{\sqrt{16}+\sqrt{x}-4}=16+x−4x=lim⁡x

0x16+x−4∗16+x+416+x+4=\lim_{x \to 0} \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}

\frac{\sqrt{16+\sqrt{x}}+4}{\sqrt{16+\sqrt{x}}+4}=limx

016+x−4x∗16+x+416+x+4=lim⁡x

0x(16+x+4)16+x−16=\lim_{x \to 0} \frac{\sqrt{x}(\sqrt{16+\sqrt{x}}+4)}{16+\sqrt{x}-16}=limx

016+x−16x(16+x+4)=lim⁡x

0x(16+x+4)x=\lim{x \to0}\frac{\sqrt{x}(\sqrt{16+\sqrt{x}}+4)}

{\sqrt{x}}=limx<br />→0xx(16+x+4)=lim⁡x<br />→016+x+4=\lim_{x \to 0}

[tex\sqrt{16+\sqrt{x}+4}=limx[/tex]

016+x+4=16+4=\sqrt{16} +4=16+4=8=8=8

from all thus steps ,thus we get a=8

a = 8.

hence proved..

hope it helps:--

T!—!ANKS!!!!
Similar questions