Math, asked by electronicmaster75, 9 months ago


lim \frac{}{x - > 0}  {(x + 2)}^{ \frac{1}{3} }  -  {2}^{ \frac{1}{3} }  \div x

Answers

Answered by BrainlyEmpire
10

Answer:

Hello mate ✌️

Step-by-step explanation:

The symbol ± is written using the code \pm in LaTeX. To write a fraction, you use the code \frac{expression in the numerator}{expression in the denominator} . Formulas that appear in text are called inline. ... This is a squashed inline fraction 23, written using the code \frac{2}{3}.

hope it will be helpful to you ✌️✌️

Answered by DennisRitchie
2

lim \:   \frac{(x + 2) {}^{ \frac{1}{3}  }  - 2 {}^{ \frac{1}{3} } }{x}  \\ x -  > 0 \\  \\ put \:  \:  \: x = 0  \:  \:  \: we \:  \:  \:  \: get \:  \:  \:  \frac{0}{0}   \:  \:  \: form \\  \\ now \:  \: by \:  \: using \:  \: l \: hospitals \: rule \: we \: have \\  \\ lim \:  \:  \frac{ \frac{1}{3}(x + 2)  {}^{ \frac{1}{3} - 1 }   }{1}  \\ x -  > 0 \\  \\  =  \frac{1}{3} (0 + 2) {}^{ \frac{ - 2}{3} }  \\  \\  =  \frac{1}{3 \times 2 {}^{ \frac{2}{3} } }  \\  \\  =  \frac{1}{3 \times 4 {}^{ \frac{1}{3} } }

Similar questions