Math, asked by shreyamore045, 11 months ago

\lim_{h \to \0} (cos(x+h)-cosx)/h



plzz answer now

Answers

Answered by shadowsabers03
1

Given,

\displaystyle\longrightarrow\sf{\lim_{h\to0}\dfrac {\cos (x+h)-\cos x}{h}}

We know the sum - to-product rule,

\displaystyle\longrightarrow\sf{\cos A-\cos B=-2\sin\left (\dfrac {A+B}{2}\right)\cos\left (\dfrac {A-B}{2}\right)}

Then,

\displaystyle\longrightarrow\sf{\lim_{h\to0}\dfrac {\cos (x+h)-\cos x}{h}=\lim_{h\to0}\dfrac {-2\sin\left (\dfrac {x+h+x}{2}\right)\sin\left (\dfrac {x+h-x}{2}\right)}{h}}

\displaystyle\longrightarrow\sf{\lim_{h\to0}\dfrac {\cos (x+h)-\cos x}{h}=-\lim_{h\to0}\sin\left (x+\dfrac {h}{2}\right)\cdot2\lim_{h\to0}\dfrac {\sin\left (\dfrac {h}{2}\right)}{h}}

Well, as \sf{h\longrightarrow0,\ \dfrac {h}{2}\longrightarrow0.} Then,

\displaystyle\longrightarrow\sf{\lim_{h\to0}\dfrac {\cos (x+h)-\cos x}{h}=-\sin\left (x+\dfrac {0}{2}\right)\cdot\lim_{\frac{h}{2}\to0}\dfrac {\sin\left (\dfrac {h}{2}\right)}{\left (\dfrac {h}{2}\right)}}

\displaystyle\longrightarrow\sf{\lim_{h\to0}\dfrac {\cos (x+h)-\cos x}{h}=-\sin x\cdot1}

\displaystyle\longrightarrow\sf{\underline {\underline {\lim_{h\to0}\dfrac {\cos (x+h)-\cos x}{h}=-\sin x}}}

Answered by BendingReality
11

Answer:

\displaystyle \red{{-\sin x}}

Step-by-step explanation:

Given :

\displaystyle{ \lim_{h \to 0} \frac{\cos(x+h)-\cos x}{h} }

Using formula cos c - cos d = - sin [ ( c + d ) / 2 ] sin [ ( c - d ) / 2 ]

\displaystyle{ \lim_{h \to 0} -2\left(\frac{\sin \left(\dfrac{2x+h)}{2}\right)\times \sin \left( \dfrac{ h}{2} \right)}{h} \right)}

Now multiply and divide by 1 / 2 :

\displaystyle{ \lim_{h \to 0} -\frac{2}{2} \left(\frac{\sin \left(\dfrac{2x+h)}{2}\right)\times \sin \left( \dfrac{ h}{2} \right)}{\dfrac{h}{2}}\right)}

We know :

\displaystyle{ \lim_{x \to 0} \frac{\sin x}{x} = 1}\\\\\\\displaystyle{\implies \lim_{h/2 \to 0} \frac{\sin h/2}{h/2} = 1}\\\\\\

# As h approaches to 0 that implies h / 2 also approaches to 0.

\displaystyle{ \lim_{h \to 0} -\sin \left(\dfrac{2x+h}{2}\right)}

Now putting h = 0

\displaystyle{ \lim_{h \to 0} -\sin \left(\dfrac{2x+0}{2}\right)}\\\\\\\displaystyle{\rightarrow -\sin \left(\dfrac{2x}{2}\right)}\\\\\\\displaystyle \boxed{{-\sin x}}

Therefore we get answer.

Similar questions