Science, asked by ppoojith89, 9 months ago

\lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx \leq \\ \leq x_{123} \frac{x}{y} \sqrt[n]{x} \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \pi \beta x_{123} \geq

Answers

Answered by Anonymous
0

Answer:

\lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx \leq \\ \leq x_{123} \frac{x}{y} \sqrt[n]{x} \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \pi \beta x_{123} \geq

Answered by pratyushprabhakar25
3

Answer:

I don't like this question

plzz follow me and mark the brainliest

Similar questions