Math, asked by anna6678, 7 months ago


lim \:  \:  \sqrt{1 + x \:  \:  }  -  \:  \sqrt{1 - x}   \:  \:  \div  \: x \\ x = 0
a) -1
b) 1
c) 0
d) dose not exist​

Answers

Answered by ashounak
0

Answer:

1

Step-by-step explanation:

lim \:  \frac{ \sqrt{1 + x } -  \sqrt{1 - x} }{x}

lim \frac{ \sqrt{1 + x} -  \sqrt{1 - x} }{x} \times  \frac{ \sqrt{1 + x} +  \sqrt{1 - x} }{ \sqrt{1 + x} +  \sqrt{1 - x}  }

lim \frac{1 + x -(1 - x)}{x \sqrt{1 + x} + x \sqrt{1 - x} }

lim \frac{2x}{x \sqrt{1  + x} + x \sqrt{1 - x} }

lim \frac{2}{ \sqrt{1 + x} +  \sqrt{1 - x} }

 \frac{2}{ \sqrt{1 + 0} +  \sqrt{1 - 0} }

 \frac{2}{ \sqrt{1} +  \sqrt{1}  }

 \frac{2}{1 + 1}

 \frac{2}{2}  = 1

Hope it helps you.

It was difficult question and took a lot of time.

Plz mark it brainliest.

Similar questions