Math, asked by SharmaShivam, 7 months ago

\lim_{x \to 0} \dfrac{\left(1+x\right)^{\frac{1}{2}}-e+\dfrac{ex}{2}}{x^2} equals

Answers

Answered by amansharma264
11

Some related formula of expansion.

 \bold{1) =  log(1 + x)  = x -  \frac{x {}^{2} }{2} +  \frac{x {}^{3} }{3}  -  \frac{ {x}^{4} }{4}...  }

 \bold{2) =  log(1 - x)  =  - x -  \frac{ {x}^{2} }{2}  -  \frac{ {x}^{3} }{3} -  \frac{ {x}^{4} }{4} ..... }

 \bold{3) = e {}^{x}  = 1 + x +  \frac{ {x}^{2} }{ 2!}  +  \frac{ {x}^{3} }{3!}  + ...}

 \bold{4) = e {}^{ - x}  = 1 - x +  \frac{ {x}^{2} }{2!} -  \frac{ {x}^{3} }{3!}  + ...  }

 \bold{5) =  \sin(x)  = x -  \frac{ {x}^{3} }{3!}  +  \frac{ {x}^{5} }{5!} -  \frac{ {x}^{7} }{7!} ...... }

 \bold{6) =  \cos(x)  = 1 -  \frac{ {x}^{2} }{2!} +  \frac{ {x}^{4} }{4!}   -  \frac{ {x}^{6} }{6!} ....}

 \bold{7) =  \tan(x)  = x +  \frac{ {x}^{3} }{3}  +  \frac{2 {x}^{5} }{15}  + ....}

Note = for solution see image

attachment.

Attachments:

BrainlyConqueror0901: well done : )
Answered by aayyuuss123
2

Step-by-step explanation:

\huge\boxed  {\purple {\mathbb{\underline  {\underbrace  {Answer}}}}}

<font color =orange >

see this attachment

Attachments:
Similar questions