Math, asked by SharmaShivam, 9 months ago

\lim_{x \to 0} \dfrac{\left(1+x\right)^{\frac{1}{x}}-e+\frac{ex}{2}}{x^2} equals:-

Answers

Answered by aayyuuss123
1

Step-by-step explanation:

\huge\boxed  {\red {\mathbb{\underline  {\underbrace  {Answer}}}}}

<font color =purple >

see this attachment

Attachments:
Answered by Anonymous
7

Question:-

 \rm \displaystyle \:  \lim_{x \:  \to \: 0} \:   \rm\frac{(1 + x) {}^{ \frac{1}{x} } - e +  \frac{ex}{2}  }{  {x}^{2}  }

Solution:-

 \rm \displaystyle \:  \lim_{x \:  \to \: 0} \:   \rm\frac{(1 + x) {}^{ \frac{1}{x} } - e +  \frac{ex}{2}  }{  {x}^{2}  }

To solve this question first we know the expansion of

 \rm \: (1 + x) {}^{ \frac{1}{x} }  = e(1 -  \dfrac{x}{2}  +  \dfrac{11}{24}  {x}^{2}  - \:  \: .........)

But we have to need only

 \rm \: (1 + x) {}^{ \frac{1}{x} }  = e(1 -  \dfrac{x}{2}  +  \dfrac{11}{24}  {x}^{2}  )

Now put the value

 \rm \displaystyle \:  \lim_{x \:  \to \: 0} \:   \rm\frac{e(1 -  \dfrac{x}{2}  +  \dfrac{11}{24}  {x}^{2}  ) {}^{  } - e +  \frac{ex}{2}  }{  {x}^{2}  }

\rm \displaystyle \:  \lim_{x \:  \to \: 0} \:   \rm\frac{(e-  \dfrac{xe}{2}  +  \dfrac{11}{24}  {x}^{2}  ) {}^{  } - e +  \frac{ex}{2}  }{  {x}^{2}  }

\rm \displaystyle \:  \lim_{x \:  \to \: 0} \:   \rm\frac{ \cancel e-  \cancel \dfrac {xe}{2}  +  \dfrac{11e}{24}  \cancel {x}^{2}   {}^{  } -  \cancel e  +  \cancel  \dfrac{ex}{2}  }{  \cancel {x}^{2}  }

Now we get

\rm \displaystyle \:  \lim_{x \:  \to \: 0} \:  \rm \frac{11e}{24}

Answer:-

 \boxed{ \rm   = \frac{11e}{24} }

Similar questions