Math, asked by shreyamore045, 11 months ago

\lim_{x \to \0}[(e^2^x-1)(1_cos4x)]/x^3

Answers

Answered by shadowsabers03
0

Question:-

Evaluate \displaystyle\sf{\lim_{x\to0}\dfrac {(e^{2x}-1)(1-\cos (4x))}{x^3}.}

Solution:-

The identities used:

  • \displaystyle\sf{\lim_{x\to0}\dfrac {e^x-1}{x}=1}

  • \displaystyle\sf{1-\cos x=2\sin^2\left (\dfrac {x}{2}\right)}

  • \displaystyle\sf{\lim_{x\to0}\dfrac {\sin x}{x}=1}

Well, as \sf{x\longrightarrow0,\ 2x\longrightarrow0.}

Then,

\displaystyle\longrightarrow\sf{\lim_{x\to0}\dfrac {(e^{2x}-1)(1-\cos (4x))}{x^3}=\lim_{x\to0}\dfrac {e^{2x}-1}{x}\cdot\lim_{x\to0}\dfrac {2\sin^2(2x)}{x^2}}

\displaystyle\longrightarrow\sf{\lim_{x\to0}\dfrac {(e^{2x}-1)(1-\cos (4x))}{x^3}=2\lim_{2x\to0}\dfrac {e^{2x}-1}{2x}\cdot4\lim_{2x\to0}\dfrac {\sin (2x)}{2x}\cdot2\lim_{2x\to0}\dfrac {\sin (2x)}{2x}}

\displaystyle\longrightarrow\sf{\lim_{x\to0}\dfrac {(e^{2x}-1)(1-\cos (4x))}{x^3}=2\times4\times2}

\displaystyle\longrightarrow\sf{\underline {\underline {\lim_{x\to0}\dfrac {(e^{2x}-1)(1-\cos (4x))}{x^3}=16}}}

Similar questions