Science, asked by thapaavinitika6765, 9 months ago

\lim _{x\to \:0}\left(x\ln \left(x\right)\right)

how to solve it ?????

Answers

Answered by Anonymous
1

\lim _{x\to \:0}\left(x\ln \left(x\right)\right)=0

Steps :-

\mathrm{If\:}\lim _{x\to a-}f\left(x\right)=\lim _{x\to a+}f\left(x\right)=L\mathrm{\:then}\:\lim _{x\to a}f\left(x\right)=L

\lim _{x\to \:0-}\left(x\ln \left(x\right)\right)=0

\lim _{x\to \:0+}\left(x\ln \left(x\right)\right)=0

=0

Answered by mangalasingh00978
1

Answer:

The Laplace Convolution Theorem tells us that if we define the convolution of two function

f

(

t

)

and

g

(

t

)

by:

(

f

g

)

(

t

)

=

t

0

f

(

t

x

)

g

(

x

)

d

x

Similar questions