please Don't spam
it's a humble request.
Answers
can be rewritten as
We know,
So, using this, we get
Thus,
Now, 3 cases arises
When n = 1
So, above can be continued as
Case :- 2
When n > 1
So, above limit can be continued as
Case:- 3
When 0 < n < 1
So, above limit can be continued as
Hence,
Answer:
⟼x→∞lim[1+xn1]x
can be rewritten as
\rm \: = \:\:\displaystyle\lim_{x \to \infty } \: {\bigg[1 + \dfrac{1}{ {x}^{n} } \bigg]}^{ {x}^{n} \times \dfrac{x}{ {x}^{n} } }=x→∞lim[1+xn1]xn×xnx
We know,
\boxed{ \tt{ \: \displaystyle\lim_{x \to \infty } {\bigg[1 + \dfrac{1}{x} \bigg]}^{x} = e \: }}x→∞lim[1+x1]x=e
So, using this, we get
\rm \: = \: {e}^{\displaystyle\lim_{x \to \infty }x \times \dfrac{1}{ {x}^{n} } }=ex→∞limx×xn1
\rm \: = \: {e}^{\displaystyle\lim_{x \to \infty } \dfrac{1}{ {x}^{n - 1} } }=ex→∞limxn−11
Thus,
\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to \infty } \: {\bigg[1 + \dfrac{1}{ {x}^{n} } \bigg]}^{x} = \: {e}^{\displaystyle\lim_{x \to \infty } \dfrac{1}{ {x}^{n - 1} } } \: }}:⟼x→∞lim[1+xn1]x=ex→∞limxn−11
Now, 3 cases arises
When n = 1
So, above can be continued as
\rm \: = \: {e}^{\displaystyle\lim_{x \to \infty } \dfrac{1}{ {x}^{n - 1} } }=ex→∞limxn−11
\rm \: = \: {e}^{\displaystyle\lim_{x \to \infty } \dfrac{1}{ {x}^{1 - 1} } }=ex→∞limx1−11
\rm \: = \: {e}^{\displaystyle\lim_{x \to \infty } \dfrac{1}{ {x}^{0} } }=ex→∞limx01
\rm \: = \: {e}^{\displaystyle\lim_{x \to \infty }1 }=ex→∞lim1
\rm \: = \:e=e
Case :- 2
When n > 1
So, above limit can be continued as
\rm \: = \: {e}^{\displaystyle\lim_{x \to \infty } \dfrac{1}{ {x}^{n - 1} } }=ex→∞limxn−11
\rm \: = \: {\bigg[e\bigg]}^{\dfrac{1}{ \infty } }=[e]∞1
\rm \: = \: {e}^{0}=e0
\rm \: = \:1=1
Case:- 3
When 0 < n < 1
So, above limit can be continued as
\rm \: = \: {e}^{\displaystyle\lim_{x \to \infty } \dfrac{1}{ {x}^{n - 1} } }=ex→∞limxn−11
\rm \: = \: {e}^{\displaystyle\lim_{x \to \infty } {x}^{1 - n} }=ex→∞limx1−n
\rm \: = \: {e}^{ \infty }=e∞
\rm \: = \: \infty=∞
Hence,
\begin{gathered}\begin{gathered}\begin{gathered}\bf\: \: \displaystyle\lim_{x \to \infty } \: {\bigg[1 + \dfrac{1}{ {x}^{n} } \bigg]}^{x} = \begin{cases} &\sf{e \: \: when \: n = 1} \\ &\sf{1 \: \: when \: n > 1}\\ &\sf{ \infty \: \: when \:0 < n < 1 } \end{cases}\end{gathered}\end{gathered}\end{gathered}x→∞lim[1+xn1]x=⎩⎪⎪⎨⎪⎪⎧ewhenn=11whenn>1∞when0<n<1
Step-by-step explanation: