Math, asked by aryan021212, 4 days ago


 \lim \: x \: to \:  \infty  \:  \: ( \frac{ {x}^{2}  + 1}{x + 1}  - px - q) = 0

Find the values of p and q.

Don't use L Hospital Rule​

Answers

Answered by singhkalikotayaditi
3

Answer:

(D)

I hope this is helpful

Attachments:
Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{x \to  \infty }\rm  \: \: \bigg( \frac{ {x}^{2} + 1}{x + 1} - px - q\bigg) = 0 \\

can be rewritten as

\rm \: \displaystyle\lim_{x \to  \infty }\rm  \: \: \bigg( \frac{ {x}^{2} + 1 - (x + 1)(px + q)}{x + 1}\bigg) = 0 \\

\rm \: \displaystyle\lim_{x \to  \infty }\rm  \: \: \bigg( \frac{ {x}^{2} + 1 - {px}^{2} - qx - px - q }{x + 1}\bigg) = 0 \\

\rm \: \displaystyle\lim_{x \to  \infty }\rm  \: \: \bigg( \frac{ {x}^{2}(1 - p) - x(q  + p) + 1 - q }{x + 1}\bigg) = 0 \\

Now, as limit is given to be finite,

So,

\rm\implies \:1 - p \:  =  \: 0 \\

\rm\implies \:p \:  =  \: 1 \\

So, above expression can be rewritten as

\rm \: \displaystyle\lim_{x \to  \infty }\rm  \: \: \bigg( \frac{  - x(q  + p) + 1 - q }{x + 1}\bigg) = 0 \\

\rm \: \displaystyle\lim_{x \to  \infty }\rm  \: \: \bigg( \frac{ x\bigg[ -(q  + p) +  \dfrac{1}{x} -  \dfrac{q}{x}\bigg]}{x \bigg[1+  \dfrac{1}{x} \bigg]}\bigg) = 0 \\

\rm \: \displaystyle\lim_{x \to  \infty }\rm  \: \: \bigg( \frac{ -(q  + p) +  \dfrac{1}{x} -  \dfrac{q}{x}}{1+  \dfrac{1}{x}}\bigg) = 0 \\

\rm \:  - (q + p) = 0 \\

\rm \: q + p = 0 \\

\rm \: q  +  1 = 0 \\

\rm\implies \:q \:  =  \:  -  \: 1 \\

Hence,

\begin{gathered}\begin{gathered}\bf\: \rm\implies \:\begin{cases} &\sf{p \:  =  \: 1}  \\ \\ &\sf{q \:  =  \:  -  \: 1} \end{cases}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

 \:  \:  \:  \:  \:  \:  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x}  \:  =  \: 1 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x}  \:  =  \: 1 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x}  \:  =  \: 1 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x}  \:  =  \: 1 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x}  \:  =  \: loga \\

Similar questions