Math, asked by 12ahujagitansh, 4 days ago


lim \: x \: to \: y \:  \frac{ {sin}^{2} x -  {sin}^{2} y}{ {x}^{2} -  {y}^{2}  }
Evaluate the above please​

Answers

Answered by mathdude500
63

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to y} \frac{ {sin}^{2}x -  {sin}^{2}y}{ {x}^{2} -  {y}^{2} }

If we substitute directly x = y, we get

\rm \:  =  \: \dfrac{ {sin}^{2}x -  {sin}^{2} x}{ {x}^{2}  -  {x}^{2} }

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form.

So, to solve it further,

\rm :\longmapsto\:\displaystyle\lim_{x \to y} \frac{ {sin}^{2}x -  {sin}^{2}y}{ {x}^{2} -  {y}^{2} }

\rm \:  =  \: \displaystyle\lim_{x \to y} \dfrac{sin(x + y)sin(x - y)}{(x + y)(x - y)}

can be rewritten as

\rm \:  =  \: \displaystyle\lim_{x \to y} \frac{sin(x + y)}{x + y} \times \displaystyle\lim_{x \to y} \frac{sin(x - y)}{x - y}

\rm \:  =  \: \dfrac{sin(y+ y)}{y + y} \times \displaystyle\lim_{x - y \to 0} \frac{sin(x - y)}{x - y}

We know,

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{sinx}{x} = 1 \: }}

So, using this, we get

\rm \:  =  \: \dfrac{sin2y}{2y} \times 1

\rm \:  =  \: \dfrac{sin2y}{2y}

Hence,

\rm \implies\:\boxed{ \tt{ \: \displaystyle\lim_{x \to y} \frac{ {sin}^{2}x -  {sin}^{2}y}{ {x}^{2} -  {y}^{2} }  =  \frac{sin2y}{2y} \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know :-

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{sinx}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{tanx}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{log(1 + x)}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{ {e}^{x}  - 1}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{ {a}^{x}  - 1}{x} = loga \: }}

Answered by IamIronMan0
62

Answer:

 \huge \pink{ \frac{ \sin(y) \cos(y)  }{y} }

Step-by-step explanation:

Note that in given expression y is not variable . Think of y as some constant .

As we can see it's 0/0 form . To avoid confusion let's change it into some familiar form

Now let

x - y = z \\  \implies \: x = y + z

Now our limit changes into

 \displaystyle{ \lim_{z \to0} \frac{ \sin {}^{2} (y + z) -  \sin {}^{2} (y)  }{(y + z) {}^{2}  -  {y}^{2} } } \\  \\ \implies \\  \displaystyle{ \lim_{z \to0} \frac{ \sin  (y + z) -  \sin  (y)  }{z} } .\frac{ \sin  (y + z) +  \sin  (y)  }{2y + z}  \\

Now there are two terms in multiply first term is 0/0 form so differentiate it wrt z ( remember y is just a constant )

\displaystyle{ \lim_{z \to0} \frac{ \cos(y + z)  -  0  }{1} } .\frac{ \sin  (y + z) +  \sin  (y)  }{2y + z}

Now put limit z to 0

 \frac{ \cos(y + 0).  \{\sin(y + 0) +  \sin(y)   \}  }{(2y + 0)}  \\  \\  =  \frac{ \cos(y).  2\sin(y) }{2y}  \\  \\  =  \frac{ \sin(y) \cos(y)  }{y}

Note that it's same answers as mathdude

Similar questions