Math, asked by pareexitbaldaniya, 3 months ago


 log_{2}(32)  -  log_{4}(32)

Answers

Answered by Asterinn
5

 \tt  \longrightarrow log_{2}(32) - log_{4}(32) \\  \\ \tt  \longrightarrow log_{2}( {2}^{5} ) - log_{ {2}^{2} }( {2}^{5} )\\  \\ \tt  \longrightarrow5 \:  log_{2}( {2} ) -  \dfrac{5}{2} log_{ {2} }( {2} )\\  \\ \tt  \longrightarrow(5 \times 1)-(  \dfrac{5}{2}  \times 1)\\  \\ \tt  \longrightarrow5 -  \dfrac{5}{2}\\  \\ \tt  \longrightarrow  \dfrac{10 - 5}{2} = \dfrac{ 5}{2}

Answer : 5/2

 \bf Additional- Information :

\boxed{\boxed{\begin{minipage}{4.2cm}\circ\sf\:\ln 1=0\\\circ\sf\:\ln e=1\\\circ\sf\:\ln x=y\leftrightarrow e^y=x\\\circ\sf\:e^{\ln x}=x,\:x>0\\\circ\sf\:\ln(e^x)=x,\:x\in\mathbb{\large R}\\\circ\sf\:\ln(xy)=\ln x+\ln y\\\circ\sf\:\ln(x/y)=\ln x-\ln y\\\circ\sf\:\ln(x^r)=r\ln x\\\circ\sf\:\ln x=log_e\:x\end{minipage}}}

\boxed{\boxed{\begin{minipage}{5cm}\displaystyle\circ\sf\ ^{a} log \ a= 1\\\\\circ \ ^{a}log \ 1 = 0 \\\\\circ \ ^{a ^{n}} log \ b^{m}= \dfrac{m}{n} \times\:^{a}log \ b \\\\\circ \ ^{a^{m}} \ log \ b^{m} = \ ^{a}log \ b \\\\\circ \ ^{a}log \ b = \dfrac{1}{^{b}log \ a} \\\\\circ \ ^{a}log \ b = \dfrac{^{m}log \ b}{^{m} log \ a} \\\\\circ \ a^{^{a} logb} = b \\\\\circ \ ^{a}log \ b + ^{a}log \ c = \ ^{a}log(bc) \\\\\circ \ ^{a}log \ b -\: ^{a}log \ c = \ ^{a}log \left( \dfrac{b}{c} \right) \\\circ \ ^{a}log \ b \:\cdot\: ^{a}log \ c = \ ^{a}log \ c \\\\\circ \ ^{a}log \left( \dfrac{b}{c} \right) = \ ^{a}log \left(\dfrac{c}{b}\right)\end{minipage}}}

Similar questions