Math, asked by 0scs994340, 5 hours ago


 log_{2} {64} +  log_{2} {32} -  log_{2} {16}
find the value of this☝️

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given Logarithmic expression is

\rm :\longmapsto\: log_{2}(64) +  log_{2}(32) -  log_{2}(16)

can be rewritten as

\rm \:  =  \: \: log_{2}( {2}^{6} ) +  log_{2}( {2}^{5} ) -  log_{2}( {2}^{4} )

We know,

\rm :\longmapsto\:\boxed{\tt{  log_{a}( {a}^{x} ) = x \: }}

\rm \:  =  \:  \: 6 + 5 - 4

\rm \:  =  \:  \: 11 - 4

\rm \:  =  \: 7

Therefore,

 \red{\rm :\longmapsto\: \boxed{\sf{ log_{2}(64) +  log_{2}(32) -  log_{2}(16)  = 7}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\rm :\longmapsto\:\boxed{\tt{ log(xy) =  log(x)  +  log(y)}}

\rm :\longmapsto\:\boxed{\tt{ log \frac{x}{y}  =  log(x) -  log(y)}}

\rm :\longmapsto\:\boxed{\tt{ log {x}^{y} = y \: logx}}

\rm :\longmapsto\:\boxed{\tt{  log_{x}(x) = 1}}

\rm :\longmapsto\:\boxed{\tt{  log_{ {x}^{y} }( {x}^{z} ) =  \frac{z}{y} }}

\rm :\longmapsto\:\boxed{\tt{  log_{ {x}^{y} }( {w}^{z} ) =  \frac{z}{y}  log_{x}(w) }}

Similar questions