Math, asked by SKAM2129, 1 month ago


 log_{5}5 \sqrt{5 \sqrt{5 \sqrt{5.... \infty } } }

Answers

Answered by assingh
24

Topic :-

Logarithm

To Evaluate :-

\sf{\log_{5}5\sqrt{5\sqrt{5\sqrt{5\cdots\cdots\infty}}}}

Solution :-

\sf{\log_{5}5\sqrt{5\sqrt{5\sqrt{5\cdots\cdots\infty}}}}

\sf{\log_{5}5\left(\sqrt{5\sqrt{5\sqrt{5\cdots\cdots\infty}}}\right)}

\sf{Let\:\sqrt{5\sqrt{5\sqrt{5\cdots\cdots\infty}}}=x}

\sf{\sqrt{5\left(\sqrt{5\sqrt{5\cdots\cdots\infty}}\right)}=x}

\sf{\sqrt{5(x)}=x}

Squaring both sides,

\sf{5x=x^2}

\sf{x^2-5x=0}

\sf{x(x-5)=0}

\sf{Either\:x=0\:or\:x=5}

We reject x = 0, as square root of a positive number can't be Zero.

So, x = 5.

\sf{\log_{5}5\left(\sqrt{5\sqrt{5\sqrt{5\cdots\cdots\infty}}}\right)=\log_{5}5(x)=\log_{5}5(5)}

\sf {\log_55(5)=\log_55^2}

\sf {\log_55^2=2\log_55}

\sf {(\because \log a^b=b\log a)}

\sf {2\log_55=2}

\sf {(\because \log_a a=1)}

Answer :-

\underline{\boxed{\sf{\log_{5}5\sqrt{5\sqrt{5\sqrt{5\cdots\cdots\infty}}}=2}}}

Similar questions