Math, asked by talukdarbhabesh227, 25 days ago


 (log \: {a)}^{2} - ( log \: {b})^{2} = log(ab) \times log( \frac{a}{b} )
prove that​

Answers

Answered by BrainlyIAS
9

To Prove :

\sf \log(ab) \times \log \left( \dfrac{a}{b} \right) = \left( \log a \right)^2 - \left( \log b \right)^2

Proof :

Let's take LHS ,

\longrightarrow \sf  \log \left( ab\right) \times  \log \left( \dfrac{a}{b}\right)

We have ㏒( xy ) = ㏒ x + ㏒ y and

\rm \log \left( \dfrac{x}{y}\right) = \log x - \log y

\longrightarrow \sf \left[\  \log \left( a\right) + \log \left( b\right) \right] \times \left[\  \log \left( a\right) - \log \left( b\right) \right]

We have (a+b)(a-b) = a² -  b²

\longrightarrow \sf   \left( \log  a\right)^2 - \left( \log  b \right)^2

RHS

Similar questions