Math, asked by HansikaSunaina, 6 months ago


log3 \sqrt{243 = }

Answers

Answered by Anonymous
34

{\huge{\fcolorbox{aqua}{gold}{\fcolorbox{black}{blue}{Answer\checkmark}}}}

 \implies \:   \rm \: log_{3} \: ( \sqrt{243} )  = x \\  \\  \implies \:   \rm{3}^{x}  =  \sqrt{243}  \\  \\  \rm \implies \:   {3}^{x}  =  \sqrt{3 \times 3 \times 3 \times 3 \times 3}  \\  \\  \implies \:  \rm  {3}^{x}  = 3 \times 3 \sqrt{3}  \\  \\  \implies  \rm\:  {3}^{x}  =  {3}^{2}  \times  {3}^{ \frac{1}{2} }  \\  \\  \implies \:  \rm  {3}^{x}  =  {3}^{2 +  \frac{1}{2} }  =  {3}^{ \frac{5}{2} }  \\  \\  \rm{comparing \: both \: powers} \\  \\  \rm \implies \:  \boxed{x = \frac \pink{5} \pink{2} }

Answered by Anonymous
4

Step-by-step explanation:

Refer to the attachment......

Hope it helps u....

Attachments:
Similar questions