Math, asked by kvnmurthy19, 1 year ago

<b>{Find the area of the triangle formed by the points (8, -5), (-2, -7) and (5, 1) by using Heron’s formula}

Answers

Answered by abhi569
10
Let point ( 8 , - 5 ) = A
Point ( - 2 , - 7 ) = B
Point ( 5 , 1 ) = C



By Distance Formula :


\text{Distance between A and B }=\sqrt{(8+2)^2 + (7-5)^2}\\\quad = \sqrt{(10)^2+(2)^2}\\\quad=\sqrt{100+4}\\\quad=\sqrt{104}units


Hence, distance between A and B is √104 units.



Then,
\text{Distance between A and C}=\sqrt{(8-5)^2+(-5-1)^2}\\\quad=\sqrt{(3)^2+(-6)^2}\\\quad=\sqrt{9+36}\\\quad=\sqrt{45}units


Hence, distance between A and C is √45 units



Now,
\text{Distance between B and C}=\sqrt{(5+2)^2+(1+7)^2}\\\quad=\sqrt{(7)^2+(8)^2}\\\quad=\sqrt{49+64}\\\quad=\sqrt{113} units


Hence distance between B and C is √113 units



Now,
\text{Semi perimeter of triangle}=\dfrac{\sqrt{104}+\sqrt{45}+\sqrt{113}}{2}



By Heron's Formula,
\implies Area=\sqrt{\bigg\{\dfrac{\sqrt{104}+\sqrt{45}+\sqrt{113}}{2}\bigg\}\bigg\{\dfrac{\sqrt{104}+\sqrt{45}+\sqrt{113}}{2}-\sqrt{104}\bigg\}\bigg\{\dfrac{\sqrt{104}+\sqrt{45}+\sqrt{113}}{2}-\sqrt{45}\bigg\}\bigg\{\dfrac{\sqrt{104}+\sqrt{45}+\sqrt{113}}{2}-\sqrt{113}\bigg\}}\\


\\\implies Area=\sqrt{\bigg\{\dfrac{\sqrt{104}+\sqrt{45}+\sqrt{113}}{2}\bigg\}\bigg\{\dfrac{\sqrt{113}+\sqrt{45}-\sqrt{104}}{2}\bigg\}\bigg\{\dfrac{\sqrt{104}-\sqrt{45}+\sqrt{113}}{2}\bigg\}\bigg\{\dfrac{\sqrt{104}+\sqrt{45}-\sqrt{113}}{2}\bigg\}}\\


\\\implies Area=\sqrt{\bigg\{\dfrac{\sqrt{104}+\sqrt{45}+\sqrt{113}}{2}\bigg\}\bigg\{\dfrac{\sqrt{104}+\sqrt{45}-\sqrt{113}}{2}\bigg\}\bigg\{\dfrac{\sqrt{113}+\sqrt{45}-\sqrt{104}}{2}\bigg\}\bigg\{\dfrac{\sqrt{104}+\sqrt{113}-\sqrt{45}}{2}\bigg\}}\\


\\\implies Area=\sqrt{\bigg\{\dfrac{\sqrt{104}+\sqrt{45}+\sqrt{113}}{2}\bigg\}\bigg\{\dfrac{\sqrt{104}+\sqrt{45}-\sqrt{113}}{2}\bigg\}\bigg\{\dfrac{\sqrt{113}+(\sqrt{45}-\sqrt{104})}{2}\bigg\}\bigg\{\dfrac{\sqrt{113}-(\sqrt{45}-\sqrt{104}}{2}\bigg\}}



From factorization, we know,
( a + b )( a - b ) = a² - b²


\implies Area = \dfrac{1}{4}\times\sqrt{\{(\sqrt{104}+\sqrt{45}\}^2-\{\sqrt{113}\}^2 )(\{\sqrt{113}\}^2-\{\sqrt{45}-\sqrt{104}\}^2)}


\implies Area = \dfrac{1}{4}\times \sqrt{(12\sqrt{130}+36)(12\sqrt{130}-36)}


\implies Area = \dfrac{1}{4}\times\sqrt{(12\sqrt{130})^2-(36)^2}


\implies Area=\dfrac{1}{4}\times\sqrt{132^2}


\implies Area = \dfrac{132}{4} unit^2


\implies Area = 33 unit^2



Therefore the area of the triangle is 33 unit².

vikram991: great answer sir...
abhi569: :-)
Similar questions