Answer this question ⤴⤴
❎ No Spam ❎
Answers
Answer:
Option - (D)
Step-by-step explanation:
Given Equation is (a² + b²)t² - 2(ac + bd)t + (c² + d²) = 0.
On comparing with ax² + bx + c = 0, we get
a = (a² + b²), b = -2(ac + bd), c = (c² + d²)
Given that the equation has real roots.
∴ Δ = 0
⇒ b² - 4ac = 0
⇒ (-2(ac + bd))² - 4(a² + b²)(c² + d²) = 0
⇒ 4(ac + bd)² - 4(a²c² + a²d² + b²c² + b²d²) = 0
⇒ 4(a²c² + b²d² + 2acbd) - 4a²c² - 4a²d² - 4b²c² - 4b²d² = 0
⇒ 4a²c² + 4b²d² + 8abcd - 4a²c² - 4a²d² - 4b²c² - 4b²d² = 0
⇒ 8abcd - 4a²d² - 4b²c² = 0
⇒ 8abcd = 4a²d² + 4b²c²
⇒ 8abcd = 4(a²d² + b²c²)
⇒ 2abcd = a²d² + b²c²
⇒ 2 = (a²d²/abcd) + (b²c²/abcd)
⇒ 2 = ad/bc + bc/ad
⇒ 2bcad = a²d² + b²c²
⇒ a²d² + b²c² - 2adbc = 0
⇒ (ad - bc) = 0
⇒ ad = bc
⇒ (a/b) = (c/d)
Therefore, the answer is Option(D).
Hope this helps!
Answer:
Option - D
Step-by-step explanation:
Given Equation is (a² + b²)t² - 2(ac + bd)t + (c² + d²) = 0.
On comparing with ax² + bx + c = 0, we get
a = (a² + b²), b = -2(ac + bd), c = (c² + d²)
Given that the equation has real roots.
Δ = 0
b² - 4ac = 0
(-2(ac + bd))² - 4(a² + b²)(c² + d²) = 0
4(ac + bd)² - 4(a²c² + a²d² + b²c² + b²d²) = 0
4(a²c² + b²d² + 2acbd) - 4a²c² - 4a²d² - 4b²c² - 4b²d² = 0
4a²c² + 4b²d² + 8abcd - 4a²c² - 4a²d² - 4b²c² - 4b²d² = 0
8abcd - 4a²d² - 4b²c² = 0
8abcd = 4a²d² + 4b²c²
8abcd = 4(a²d² + b²c²)
2abcd = a²d² + b²c²
2 = (a²d²/abcd) + (b²c²/abcd)
2 = ad/bc + bc/ad
2bcad = a²d² + b²c²
a²d² + b²c² - 2adbc = 0
(ad - bc) = 0
ad = bc
(a/b) = (c/d)