Math, asked by BIGBANG1234, 1 year ago


<b><big>Good afternoon

<b>Answer the above question

<b>Chapter : Logarithm

<b>No Spam

Attachments:

Answers

Answered by abhi569
7

Your question needs a correction,


4 option : \bigg( - \infty ,\dfrac{1}{4} \bigg) \bigcup \bigg( \dfrac{5}{4} , \infty \bigg)



Given inequality : | 3 - 4x | > 2  


\overbrace{3-4x>2 \:\: , \:\: 3-4x<-2}^{\text{|3-4x|>2}}



Case I : when 3 - 4 x > 2  

⇒ 3 - 4x > 2  

⇒ 3 - 2 > 4x  

⇒ 1 > 4x  

\dfrac{1}{4} > x  


Case II : when 3 - 4x < - 2  

⇒ 3 - 4x < - 2  

⇒ 3 + 2 < 4x


⇒ 5 < 4x  

\dfrac{5}{4} < x  


\underline{- \infty}_0 _1/4 _5/4___\underline{\infty}___



In case I, x < \dfrac{1}{4}


So, value of x is less 1 /4 , it can be negative too.


\therefore solution\:\:set\:\:is\:\:\bigg( - \infty , \dfrac{1}{4} \bigg)  


In case II, x > \dfrac{5}{4}


So, value of x more than 5 / 4 ( a positive number ),  it can't be any negative number.


\therefore solution\:\:set\:\:is\:\:\bigg(\dfrac{5}{4}, \infty \bigg)  



Therefore the solution of the given inequality is   \bigg( - \infty ,\dfrac{1}{4} \bigg) \bigcup \bigg( \dfrac{5}{4} , \infty \bigg)



Option D is correct.  



BIGBANG1234: thank you so much sir
abhi569: welcome :-)
siddhartharao77: Nice explanation sir :-)
abhi569: :-)
abhi569: thanks you sir
abhi569: haha..thank*
Similar questions