Math, asked by BIGBANG1234, 1 year ago


<b><big>Hello Friends

<b><big>Answer the above question

<b><big>No Spam

Attachments:

Answers

Answered by abhi569
86

\dfrac{4}{2+\sqrt{3}-\sqrt{7}} = \sqrt{a} + \sqrt{b} +\sqrt{c}  


By Rationalization: Multiply and divide by 2 + √3 - √7 on numerator and denominator both,  


\dfrac{4 \times ( 2 + \sqrt{3} + \sqrt{7})}{( 2 +\sqrt{3} - \sqrt{3})(2 + \sqrt{3} + \sqrt{7} )}= \sqrt{a} + \sqrt{b} +\sqrt{c}  


We know, ( a + b )( a - b ) = a^2 - b^2  


\dfrac{4( 2 + \sqrt{3} + \sqrt{7}}{ ( 2 + \sqrt{7} )^2 - ( \sqrt{7} )^2 }= \sqrt{a} + \sqrt{b} +\sqrt{c}



We know, ( a + b )^2 = a^2 + b^2 + 2ab  


\dfrac{4( 2 + \sqrt{3} +\sqrt{7}}{4 + 3 + 4\sqrt{7} - 7}=\sqrt{a} + \sqrt{b} +\sqrt{c}  


\dfrac{4(2+\sqrt{3}+\sqrt{7}}{4\sqrt{3}}=\sqrt{a} + \sqrt{b} +\sqrt{c}  


\dfrac{2+\sqrt{3}+\sqrt{7}}{\sqrt{3}}=\sqrt{a} + \sqrt{b} +\sqrt{c}  


\dfrac{2}{\sqrt{3}} +\dfrac{\sqrt{3}}{\sqrt{3}} +\dfrac{\sqrt{7}}{\sqrt{3}}=\sqrt{a} + \sqrt{b} +\sqrt{c}



By Rationalization  



\dfrac{2\sqrt{3}}{3} +1 + \dfrac{\sqrt{21}}{3}=\sqrt{a} + \sqrt{b} +\sqrt{c}  


As all terms in left hand side and right hand side are positive, so sum of square terms on right hand side will be equal to the sum of square of terms in left hand side.



\therefore \bigg( \dfrac{2\sqrt{3}}{3} \bigg)^2 + 1^2 + \bigg( \dfrac{\sqrt{21}}{3} \bigg)^2= (\sqrt{a})^2 + (\sqrt{b} )^2+(\sqrt{c})^2  


\dfrac{4}{3} + 1 + \dfrac{21}{9} = a + b + c


\dfrac{12+9+21}{9} = a + b + c


\dfrac{42}{9} = a + b + c


\dfrac{14}{3} = a + b + c



Therefore, option D is correct.


abhi569: :-)
BIGBANG1234: thank you so much sir
abhi569: :-)
abhi569: :-)
BIGBANG1234: Sir can you answer my last maths question
abhi569: will answer..later
BIGBANG1234: but try to answer fast sir
abhi569: i will answer in night or tomorrow
BIGBANG1234: ok sir
Answered by Yms27
47
Hello!

answer's in the attachment.
this is just a case where I've given explaination in detail.
you can always feel free to eliminate the extra calculation steps :)


Hope you get it :)
Attachments:

Yms27: you're always welcome :)
Yms27: Thank you bro. I'm a girl O_o
Yms27: XD Thank you!
fsoniasingha: nice answet
fsoniasingha: answer
Yms27: thanks all!❤️
Similar questions