Attachments:
Answers
Answered by
141
Given Equation : 2ˡᵒᵍ₃⁷ - 7ˡᵒᵍ₃²
Let 2ˡᵒᵍ₃⁷ = x and 7ˡᵒᵍ₃² = y
∴ Given equation : x - y
Now,
2ˡᵒᵍ₃⁷ = x
taking log on both sides,
log₃2ˡᵒᵍ₃⁷ = log₃x
log₃7 x log₃2 = log₃x
∴ 3ˡᵒᵍ₃⁷ ˣ ˡᵒᵍ₃² = x ....( i )
Also, 7ˡᵒᵍ₃² = y
taking log on both sides
log₃7ˡᵒᵍ₃² = log₃y
log₃2 x log₃7 = log₃y
∴ 3ˡᵒᵍ₃² ˣ ˡᵒᵍ₃⁷ = y
As log₃2 x log₃7 = log₃7 x log₃2, 3ˡᵒᵍ₃² ˣ ˡᵒᵍ₃⁷ is also equal to 3ˡᵒᵍ₃⁷ ˣ ˡᵒᵍ₃².
∴3ˡᵒᵍ₃⁷ ˣ ˡᵒᵍ₃² = y ....( ii )
∴ x - y
Substituting the values of x and y from ( i ) and ( ii )
3ˡᵒᵍ₃⁷ ˣ ˡᵒᵍ₃² - 3ˡᵒᵍ₃⁷ ˣ ˡᵒᵍ₃²
0
Therefore the value of 2ˡᵒᵍ₃⁷ - 7ˡᵒᵍ₃² is 0.
Let 2ˡᵒᵍ₃⁷ = x and 7ˡᵒᵍ₃² = y
∴ Given equation : x - y
Now,
2ˡᵒᵍ₃⁷ = x
taking log on both sides,
log₃2ˡᵒᵍ₃⁷ = log₃x
log₃7 x log₃2 = log₃x
∴ 3ˡᵒᵍ₃⁷ ˣ ˡᵒᵍ₃² = x ....( i )
Also, 7ˡᵒᵍ₃² = y
taking log on both sides
log₃7ˡᵒᵍ₃² = log₃y
log₃2 x log₃7 = log₃y
∴ 3ˡᵒᵍ₃² ˣ ˡᵒᵍ₃⁷ = y
As log₃2 x log₃7 = log₃7 x log₃2, 3ˡᵒᵍ₃² ˣ ˡᵒᵍ₃⁷ is also equal to 3ˡᵒᵍ₃⁷ ˣ ˡᵒᵍ₃².
∴3ˡᵒᵍ₃⁷ ˣ ˡᵒᵍ₃² = y ....( ii )
∴ x - y
Substituting the values of x and y from ( i ) and ( ii )
3ˡᵒᵍ₃⁷ ˣ ˡᵒᵍ₃² - 3ˡᵒᵍ₃⁷ ˣ ˡᵒᵍ₃²
0
Therefore the value of 2ˡᵒᵍ₃⁷ - 7ˡᵒᵍ₃² is 0.
TheAstrophile:
really gr8!✌✌
Answered by
126
@thanksforquestion
@youranswer in attachment
____________________________
Hope it will help you
@thanks
Attachments:
Similar questions