Math, asked by Soumok, 1 year ago

<b>
Plz solve this trigonometry sum.​

Attachments:

rohitkhola: kti badal gyi tu
rohitkhola: ar yara n bhi bhul Gaye kti
rohitkhola: thik s Apne dosta n bbi bhul gye
rohitkhola: or Stop comment or kh h

Answers

Answered by siddhartharao77
16

Step-by-step explanation:

(i)

Given: (sinA/sinB) = (√3/2)

On squaring both sides, we get

⇒ sin²A/sin²B = 3/4

⇒ sin²A = (3/4) sin²B)

(ii)

Given: (cosA/cosB) = √5/2

On squaring both sides, we get

⇒ cos²A/cos²B = 5/4

⇒ cos²A = (5/4) cos²B

On adding (i) & (ii), we get

⇒ sin²A + cos²A = (3/4) sin²B + (5/4) cos²B

⇒ 1 = (3/4) sin²B +  (5/4) cos²B

⇒ 4 = 3 sin²B + 5 cos²B

⇒ 4 = (3 sin²B + 3 cos²B) + 2 cos²B

⇒ 4 = 3 + 2 cos²B

⇒ 1 = 2 cos²B

⇒ cos²B = (1/2)

⇒ cos B = (1/√2).

∴ sin B = (1/√2)

Substitute in (i), we get

⇒ (sinA/sinB) = √3/2

⇒ sinA = (√3/2) * (1/√2)

            = √3/2√2

∴ sinA = √3/2√2

Substitute in (ii), we get

⇒ cos²A = (5/4) cos²B

               = (5/4) * (1/2)

               = 5/8

∴ cosA = √5/2√2

Now,

Given, Tan A + Tan B

= (sinA/cosA) + (sinB/cosB)

= (√3/√5) + 1

= (√3 + √5)/(√5)

Hope it helps!


siddhartharao77: Thanks!
abhi569: sin²B + cos²B = 1 [ since cosB = 1 / √2 ] .... sin²B = 1 - cos²B = sin²B = 1 - ( 1 / √2 )^2 = 1 - 1 / 2 = 1 / 2 ....therefore sinB = √( 1 / 2 ) = 1 / √2
siddhartharao77: Thanks bro @abhi569
abhi569: it's ok bro
Answered by Anonymous
21

Answer:

tan A + tan B = ( √15 + 5 ) / 5

Step-by-step explanation:

sin A / sin B = √3 / 2

cos A / cos B = √5 / 2

Dividing both we get :

( sin A / sin B ) / ( cos A / cos B ) = √3 / √5

⇒ sin A / sin B × cos B / cos A = √3 / √5

⇒ sin A / cos A × cos B / sin B = √3 / √5

⇒ tan A / tan B = √3 / √5 -----(0)

sin A / sin B = √3 / 2

⇒ sin² A / sin²B = 3 / 4

⇒ sin²A = 3 sin²B / 4 --------(1)

cos² A / cos²B = 5/4

⇒ cos²A = 5 cos²B / 4 ------(2)

sin²A + cos²A = 1

⇒ 3 sin²B / 4 + 5 cos²B / 4 = 1

⇒ 3 sin²B + 5 cos²B = 4

Take cos²B = 1 - sin²B

⇒ 3 sin²B + 5 - 5 sin²B = 4

⇒ - 2 sin²B = - 1

⇒ sin²B = 1/2

⇒ sin B = 1/√2 ------(3)

sin²B + cos²B = 1

⇒( 1/√2 )² + cos²B = 1

⇒ 1/2 + cos²B = 1

⇒ cos²B = 1/2

⇒ cos B = 1/√2

tan B = sin B / cos B = 1

From (0) :-

tan A / tan B = √3 / √5

⇒ tan A = √3 / √5

tan A + tan B = √3 / √5 + 1

⇒ tan A + tan B = ( √3 + √5 ) /√5

⇒ tan A + tan B = √5 ( √3 + √5 ) / 5

⇒ tan A + tan B = ( √15 + 5 ) / 5


Anonymous: we have to rationalize at last !
Similar questions