Hindi, asked by rajputrajansingh2000, 9 months ago

[\tex] <font color = blue>[/tex]
the \: motion \: of \: a \: particle \: of \: mass \: x \: is \: described \: by \: y = ut + \frac{1}{2} {gt}^{2} . \: find \: the \: force \: acting \: on \: the \: particle \:}}}}}}[/tex] ​

Answers

Answered by SarcasticL0ve
6

GivEn:

  • Mass of a particle is x.
  • Motion of particle is described by y = ut + 1/2 gt²

⠀⠀⠀⠀⠀⠀⠀

To find:

  • Force acting on the particle.

⠀⠀⠀⠀⠀⠀⠀

SoluTion:

⠀⠀⠀⠀⠀⠀⠀

{\underline{\bf{\bigstar\;As\;per\:given\; Question\;:}}}

⠀⠀⠀⠀⠀⠀⠀

\star\;\sf y = it + \dfrac{1}{2} gt^2

⠀⠀⠀⠀⠀⠀⠀

Now, Differentiate y with respect to time (t),

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{dy}{dt} = u + gt

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf v = u + gt\;\;\;\;\;\;\;\;\;\bigg\lgroup\bf \dfrac{dy}{dt} = v\bigg\rgroup

━━━━━━━━━━━━━━━

Again, Differentiate v with respect to time (t),

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{dv}{dt} = g

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf a = g\;\;\;\;\;\;\;\;\;\bigg\lgroup\bf \dfrac{dv}{dt} = a\bigg\rgroup

⠀⠀⠀⠀⠀⠀⠀

Then the force is,

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf f = ma

⠀⠀⠀⠀⠀⠀⠀

\bf Here \begin{cases} &amp; \text{m = x}  \\ &amp; \text{a = g }  \end{cases}

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\bf{\pink{f = xg}}}}}\;\bigstar

\therefore Force acting on the particle is, f = xg.

Answered by sweetysinghal7109
4

Answer:

f=xg

hope it help u follow me

Similar questions