Math, asked by abdul9838, 1 year ago


   <font \: color = 'red'>

 \huge \: hlo \: guys \\  \\


<font \: color = 'pink'>

 \huge \: gm


<font \: color = 'green'>



find \: the \: value \: of \:  \: tan \: 15°

Answers

Answered by Anonymous
4

 \huge \bold \red{answer - }

Let tan(15°) = tan(45°-30°)

We know that tan(A - B) = (tanA - tanB) /(1 + tan A tan B)

⇒tan(45°-30°) = (tan45°- tan30°)/(1+tan45°tan30°) = {1- (1/√3)} / {1+(1/√3)}

∴ tan15° = (√3 - 1) / (√3 + 1)


meghanamaggi90: gm
Answered by smarty4321
283

\small \bf \blue{hey \: mate \: here \: is \: ur \: ans} \\  \\ \small \bf \blue{ \huge \: solution} \\  \\ \small \bf \blue{tan \: 15} \\  \\ \small \bf \blue{as \: we \: can \: write} \\  \\ \small \bf \blue{tan(60 - 45)} \\  \\ \small \bf \blue{using \: this \: formula} \\  \\ \small \bf \blue{tan(a - b) =  \frac{tan \: a - tan \: b}{1 + tan \: a \: tan \: b} } \\  \\ \small \bf \blue{tan(60° - 45°) =  \frac{tan \: 60° - tan \: 45°}{1 + tan \: 60° \times tan \: 45°} } \\  \\ \small \bf \blue{tan \: 15° =    \frac{ \sqrt{3}  - 1}{1 +  \sqrt{3} - 1 } } \\  \\ \small \bf \blue{tan \: 15 °=  \frac{ \sqrt{3}  - 1}{ \sqrt{3} } } \\  \\ \small \bf \blue{tan \: 15° =  \frac{( \sqrt{3}  - 1) \times  \sqrt{3} }{ \sqrt{3}  \times  \sqrt{3} } } \\  \\ \small \bf \blue{tan \: 15° =  \frac{3 -  \sqrt{3} }{3}  \:  \: ans}  \\

Similar questions