Math, asked by BIGBANG1234, 1 year ago


<i><b>Good afternoon friends

<i><b>Answer the above question

<i><b>No Spam






Attachments:

Answers

Answered by abhi569
13

Given,x= \bigg( -\dfrac{a}{2} + \sqrt{\dfrac{a^2}{4} + \dfrac{b^3}{ 27} } \bigg)^{1/3} + \bigg( -\dfrac{a}{2} - \sqrt{\dfrac{a^2}{4} + \dfrac{b^3}{ 27} } \bigg)^{1/3}


Cube on both sides,


x^3 =\bigg[\bigg( -\dfrac{a}{2} + \sqrt{\dfrac{a^2}{4} + \dfrac{b^3}{ 27} } \bigg)^{1/3} + \bigg( -\dfrac{a}{2} - \sqrt{\dfrac{a^2}{4} + \dfrac{b^3}{ 27} } \bigg)^{1/3} \bigg]^{3}


We know, ( a + b )^3 = a^3 + b^3 + 3ab( a + b ).

\therefore x^3 = \bigg( -\dfrac{a}{2} + \sqrt{\dfrac{a^2}{4} + \dfrac{b^3}{ 27} } \bigg)^{\frac{1}{3}\times 3} + \bigg( -\dfrac{a}{2} - \sqrt{\dfrac{a^2}{4} + \dfrac{b^3}{ 27} } \bigg)^{\frac{1}{3} \times 3} + 3\bigg[ \bigg( -\dfrac{a}{2} + \sqrt{\dfrac{a^2}{4} + \dfrac{b^3}{ 27} } \bigg)^{1/3} + \bigg( -\dfrac{a}{2} - \sqrt{\dfrac{a^2}{4} + \dfrac{b^3}{ 27} } \bigg)^{1/3} \bigg] \bigg( -\dfrac{a}{2} + \sqrt{\dfrac{a^2}{4} + \dfrac{b^3}{ 27} } \bigg)^{\frac{1}{3}} \bigg( -\dfrac{a}{2} - \sqrt{\dfrac{a^2}{4} + \dfrac{b^3}{ 27} } \bigg)^{\frac{1}{3} }


\text{In the question, value of}\bigg(-\dfrac{a}{2} + \sqrt{\dfrac{a^2}{4} + \dfrac{b^3}{ 27} } \bigg)^{1/3} + \bigg( -\dfrac{a}{2} - \sqrt{\dfrac{a^2}{4} + \dfrac{b^3}{ 27} } \bigg)^{1/3}\text{is given and it is x}


\therefore x^3 =-\dfrac{a}{2} + \sqrt{\dfrac{a^2}{4} +\dfrac{b^{3}}{27}}-\dfrac{a}{2} - \sqrt{\dfrac{a^2}{4} + \dfrac{b^3}{ 27} } + 3x \bigg( -\dfrac{a}{2} + \sqrt{\dfrac{a^2}{4} + \dfrac{b^3}{ 27} }\bigg)^{} \bigg( -\dfrac{a}{2} - \sqrt{\dfrac{a^2}{4} + \dfrac{b^3}{ 27} } \bigg)


We know, ( a - b )( a + b ) = a^2 - b^2


\therefore x^3 = -\dfrac{a}{2} - \dfrac{a}{2} + 3x\bigg[ \bigg( -\dfrac{a}{2} \bigg)^2 -\bigg(\sqrt{\dfrac{a^2}{4} + \dfrac{b^3}{ 27} }\bigg)^2 \bigg]


x^3 = - a + 3x\bigg(\dfrac{a^2 }{4} - \dfrac{a^2}{4} - \dfrac{b^3}{27} \bigg)^{1/3}\\ \\\\x^3 = - a + 3x\bigg( -\dfrac{b^3}{3^3}\bigg)^{1/3} \\\\ \\ x^3 = - a + 3x \bigg( \dfrac{-b}{3}\bigg)


x^3 = - a + (x \times - b)\\\\ x^3 = - a - bx \\\\x^3 + a + bx =0 \\\\ x^3 + bx + a =0



Therefore, the value of x^3 + bx + a = 0

Option C is correct.


angela86: but there is no ctrl key on mobile keyboard
abhi569: thanks @vaibhav.... type [tex]\mathbf{ your answer in one line.}[/tex]...use this for bold...and comment section is not for the message which are not related to the answer / question
angela86: ok
angela86: sorry
angela86: thanks
abhi569: Welcome :-)
Haezel: Great answer
abhi569: thanks madam
BIGBANG1234: Sir can you answer my last maths question
abhi569: sure.
Answered by hanuhomecarepr72
0

Answer:

hey mate 0 is the correct answer

Similar questions