Math, asked by CBSEMP, 1 year ago


<MARQUEE>50  marks <MARQUEE>


X²+3x-6

\bold{split \: \: not \: use \: quadratic \: formula}\  \textless \ br /\  \textgreater \ \  \textless \ br /\  \textgreater \


Answers

Answered by Sukanyayayayayayayay
5
Answer:

there are two x values

x1=−3+√15i2

x2=−3−√15i2

Explanation:

Completing the square method:
Do this only when the numerical coefficient of x2is 1.
Start with the numerical coefficient of x which is the number 3.
Divide this number by 2 then square the result. That is

(32)2=94

Add 94 to both sides of the equation

x2+3x+94+6=0+94

the first three terms now become one group which is a PST-Perfect Square Trinomial

(x2+3x+94)+6=94

(x+32)2+6=94

(x+32)2=94−6 after transposing the 6 to the right side

(x+32)2=9−244

√(x+32)2=±√9−244

x+32=±√−154

x+32=±√−15√4

x+32=±√−152

Finally, transpose the 32 to the right side of the equation

x=−32±√−152

take note: √−15=√15⋅√−1=√15i

therefore

x=−32±√15i2

there are two x values

x1=−3+√15i2

x2=−3−√15i2



HOPE IT HELPS

CBSEMP: please answrr
CBSEMP: ohk
Answered by SillySam
19
\bf{\red{QUESTION}} :- Solve equation by quadratic formula .

\bf{Equation\:={x}^{2}+3x-6}


 \bf{ \green{let \: us \: first \: find \: discriminant}}

D=b^2-4ac

Here,

b=3 , a = 1 and c= -6

So,

 \bf{d =  {3}^{2}  - 4 \times 1 \times  - 6}


   \bf{  = 9 + 24}


 \bf{ = 33}


Since D > 0 , equation has positive real roots .

Roots of quadratic equation by quadratic formula=


 =  \bf{ \frac{ - b +  \sqrt{d} }{2a} } \: and \:  \frac{ - b -  \sqrt{d} }{2a}


 =  \bf \frac{ - 3 +  \sqrt{33} }{2 \times 1} \:  and \:  \frac{ - 3 -  \sqrt{33} }{2 \times 1}


  = \bf \frac{  - 3 + 5.74 }{2}  \: and \:  \frac{ - 3 - 5.74}{2}


 =  \bf \frac{2.74}{2}  \: and \:  \frac{ - 8.74}{2}


 =  \bf{2.37 \: and \: 4.37}



 \bf \underline \pink{ \huge{hope \: it \: helps}}

Anonymous: dont worry miss incubus
Anonymous: i m here
StarGazer001: perfect ...
Similar questions