Math, asked by Alyrock007, 1 year ago

<marquee>SOLVE THIS QUESTION  PROPERLY<marquee>
spammer keep distance.
i will mark u as brainlist

Attachments:

Answers

Answered by pansumantarkm
5

Step-by-step explanation:

 \frac{sin \alpha  - 2 { \sin }^{3} \alpha }{2 {cos}^{3} \alpha -  \cos\alpha   }  \\  \\  =  \frac{sin \alpha (1 - 2 {sin}^{2}  \alpha) }{cos \alpha (2 {cos}^{2} \alpha  - 1) }  \\  \\  =  \frac{sin \alpha (1 - 2 {sin}^{2} \alpha ) }{cos \alpha (2(1 -  {sin}^{2} \alpha ) - 1) }  \\  \\  =  \frac{sin \alpha (1 - 2 {sin}^{2}  \alpha )}{cos \alpha(2 - 2 {sin}^{2} \alpha  - 1)  }  \\  \\  = \frac{sin \alpha (1 - 2 {sin}^{2}  \alpha )}{cos \alpha (1 - 2 {sin}^{2} \alpha ) }  \\  \\  =  \frac{sin \alpha }{cos \alpha }  \\  \\  = tan \alpha  \:  \:  \:  \:  \:  \:  \:  \: (proved)

____________________________________________

Concept Used:

  • cos²A=1-sin²A
  • sinA/cosA=tanA

//Hope this will Helped You//

//Please mark it as Brainliest//

Answered by Anonymous
1

</p><p>\huge \bf \blue {AnsweR}

\begin{lgathered}\frac{sin \alpha - 2 { \sin }^{3} \alpha }{2 {cos}^{3} \alpha - \cos\alpha } \\ \\ = \frac{sin \alpha (1 - 2 {sin}^{2} \alpha) }{cos \alpha (2 {cos}^{2} \alpha - 1) } \\ \\ = \frac{sin \alpha (1 - 2 {sin}^{2} \alpha ) }{cos \alpha (2(1 - {sin}^{2} \alpha ) - 1) } \\ \\ = \frac{sin \alpha (1 - 2 {sin}^{2} \alpha )}{cos \alpha(2 - 2 {sin}^{2} \alpha - 1) } \\ \\ = \frac{sin \alpha (1 - 2 {sin}^{2} \alpha )}{cos \alpha (1 - 2 {sin}^{2} \alpha ) } \\ \\ = \frac{sin \alpha }{cos \alpha } \\ \\ = tan \alpha \: \: \: \: \: \: \: \: (proved)\end{lgathered}

Similar questions