Math, asked by Anonymous, 1 month ago

________________________
 \maltese \:   \bold{rationalise \: the \: denominator \: and \: simplify :}
  \sf \: 1. \:  \frac{4 +  \sqrt{5} }{4 -  \sqrt{5} }  +  \frac{4 -  \sqrt{5} }{4 +  \sqrt{5} }  \\
 \sf \: 2. \:  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2} }  \\
 \sf3. \:  \frac{3}{5 -  \sqrt{3} }  +  \frac{2}{5 +  \sqrt{3} }  \\
 \huge \pmb{ \frak{note : -  }}
 \bold{ \leadsto \: give \: right \: answer \: only}
 \bold{ \leadsto \: do \: not \: spam }
 \bold {\leadsto \: questions \: are \: available \: in \: attachment \: too}
________________________​

Attachments:

Answers

Answered by alfiya465
1

Answer:

this is the answer. however just cross check once if there is any calculation error.

hope it helps

Attachments:
Answered by Anushkas7040
2

Answer:

You will get it below

And can you also tell from where did you got these questions ?

Step-by-step explanation:

1)

 \frac{4 +  \sqrt{5} }{4 -  \sqrt{5} }  +  \frac{4 -  \sqrt{5} }{4 +  \sqrt{5} }  \\

Rationalizing the denominator-

[tex] \frac{4 +  \sqrt{5} }{4 -  \sqrt{5} }  \times  \frac{4 +  \sqrt{5} }{4 +  \sqrt{5} }  \\  \\  =  >  \frac{(4 +  \sqrt{5} )^{2} }{(4)^{2} -  ( { \sqrt{5} })^{2} }  \\ \\   =  >  \frac{16 + 8 \sqrt{5}  + 5 }{16 - 5}  \\  \\  =  >  \frac{21 + 8 \sqrt{5} }{11}  \\  \\  \frac{4 -  \sqrt{5} }{4 +  \sqrt{5} }  \times  \frac{4  -  \sqrt{5} }{4 -  \sqrt{5} }  \\  \\   =  >  \frac{(4 -  \sqrt{5} )^{2} }{ ({4})^{2}  -  {( \sqrt{5} )}^{2} }  \\  \\  =  >  \frac{16 - 8 \sqrt{5}  + 5}{16 - 5}  \\  \\  =  >  \frac{21 - 8 \sqrt{5} }{11} [/tex]

Therefore,

\frac{4 +  \sqrt{5} }{4 -  \sqrt{5} }  +  \frac{4 -  \sqrt{5} }{4 +  \sqrt{5} }  \\   =  \frac{21 + 8 \sqrt{5} }{11}  +  \frac{21 - 8 \sqrt{5} }{11}  \\  \\  =  >  \frac{(21 + 8 \sqrt{5}) + (21 - 8 \sqrt{5})  }{11}  \\  \\  =  >  \frac{21 + 8 \sqrt{5}  + 21 - 8 \sqrt{5} }{11}  \\  \\  =  >  \frac{42}{11}

2)

\frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3 -  \sqrt{2} } }  \\  \\  =  >  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\  \\  =  >  \frac{( \sqrt{3}  +  \sqrt{2})^{2} }{( \sqrt{3})^{2}  -  ({ \sqrt{2} )}^{2}  }  \\  \\  =  >  \frac{3 + 2 \sqrt{6}  + 2}{3 - 2}  \\  \\  =  >  \frac{5 + 2 \sqrt{6} }{1}  \\  \\  =  > 5 + 2 \sqrt{6}  \\  \\

3)

 \frac{3}{5 -  \sqrt{3} }  +  \frac{2}{5 +  \sqrt{ 3} }  \\ raionalizing \: the \: denominator -  \\  \\  \frac{3}{ 5 -  \sqrt{3} }  \times  \frac{5 +  \sqrt{3} }{5 +  \sqrt{3} }  \\  \\  =  >  \frac{15 + 3}{25 - 3}  \\  \\  =  >  \frac{18}{22}  \\  \\  \\  \frac{2}{5 +  \sqrt{3} }  \times  \frac{5 -  \sqrt{3} }{5 -  \sqrt{ 3} }  \\  \\  =  >  \frac{10 - 2 \sqrt{3} }{25 - 3}  \\  \\  =  >  \frac{10 - 2 \sqrt{3} }{22}  \\ therefore  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \frac{3}{5 -  \sqrt{3} }  +  \frac{2}{5 +  \sqrt{3} }  \\  \\  =  >  \frac{18}{22}  +  \frac{10 - 2 \sqrt{3} }{22}   \\  \\  =  >  \frac{18 + 10 - 2 \sqrt{3} }{22}  \\  \\  =  >  \frac{28 - 2 \sqrt{3} }{22}  \\  \\ =  >  \frac{28}{22}  -  \frac{2 \sqrt{3} }{22}  \\  \\  =  >  \frac{14}{11}  -  \frac{ \sqrt{3} }{11}  \\  \\   =  >  \frac{14 -  \sqrt{3} }{11}

Similar questions