Math, asked by INSIDI0US, 3 months ago

 \maltese\ {\underline{\sf{Question}}}\ \maltese

Evaluate the following ! :)

 \Large {\displaystyle \sf \int \limits^{\pi}_ {0} \footnotesize \dfrac{x\ dx}{a^2\ cos^2\ x\ +\ b^2\ sin^2\ x}}

• No spam.
• Quality answer and neatly well explained answer needed.
• If the question is not appearing, kindly see the question from web.​​

Answers

Answered by senboni123456
40

Step-by-step explanation:

We have,

  I= \int \limits^{\pi} _{0} \frac{xdx}{ {a}^{2}  \cos ^{2} (x) +  {b}^{2}  \sin^{2} (x)  } ...(i) \\

  I= \int \limits^{\pi} _{0} \frac{(\pi - x)dx}{ {a}^{2}  \cos ^{2} (\pi - x) +  {b}^{2}  \sin^{2} (\pi - x)  }  \\

  I= \int \limits^{\pi} _{0} \frac{(\pi - x)dx}{ {a}^{2}  \cos ^{2} (x) +  {b}^{2}  \sin^{2} (x)  } ....(ii) \\

Adding i and ii,

  2I= 2\pi\int \limits^{ \frac{\pi}{2}} _{0} \frac{dx}{ {a}^{2}  \cos ^{2} (x) +  {b}^{2}  \sin^{2} (x)  }  \\

Dividing num. and deno. by cos²(x),

  I= \pi\int \limits^{ \frac{\pi}{2}} _{0} \frac{ \sec^{2} (x) dx}{ {a}^{2} +  {b}^{2}  \tan^{2} (x)  }  \\

 Let \tan(x) = t \implies \sec^{2}(x) dx= dt

  I= \pi\int \limits^{ \infty } _{0} \frac{ dt}{ {a}^{2} +(  b t)^{2}  }  \\

  I= \pi .\frac{1}{ab}  [   \tan^{ - 1} ( \frac{bt}{a} ) ]^{ \infty }  _{0}     \\

  I= \frac{\pi}{ab}  [   \tan^{ - 1} (  \infty  )  -  \tan ^{ - 1} (0) ]    \\

  I= \frac{\pi}{ab}  . \frac{\pi}{2}   \\

  I= \frac{\pi^{2} }{2ab}    \\

Answered by OoattitudekingoO
3

 \huge \mathbb{\purple{ ♛ǪυƎƧ✞îøИ✧☟}}

\huge{\color{red}{\underline{\color{darkblue} {\underline{\color{red} {\textbf{\textsf{\colorbox{black} {anSw€® :)☟}}}}}}}}}

the value of the given integral is zero.

  • sis iam attitude king my main id is ban for foreverso please follow my this id please

{\huge{\color{darkblue}{\underbrace{\text{\color {darkred}{€xplanation}}}}}} {\huge{\text{\color{darkpurple}{:)☟}}}}

To evaluate the given integral, let's go through the steps:

Step 1: Simplify the integrand.

The integrand can be simplified using the trigonometric identity:

\cos^2(x) + \sin^2(x) = 1

Using this identity, we can rewrite the integrand as:

\frac{x}{a^2\cos^2(x) + b^2\sin^2(x)} = \frac{x}{a^2(1 - \sin^2(x)) + b^2\sin^2(x)}

Simplifying further:

\frac{x}{a^2 - a^2\sin^2(x) + b^2\sin^2(x)} = \frac{x}{a^2 + (b^2 - a^2)\sin^2(x)}

Step 2: Use a trigonometric substitution.

Let's make a substitution by setting:

u = \sin(x)

Then, du = \cos(x)dx

We can rewrite the integral in terms of u:

\int \frac{x}{a^2 + (b^2 - a^2)\sin^2(x)} dx = \int \frac{x}{a^2 + (b^2 - a^2)u^2} \frac{du}{\cos(x)}

Step 3: Apply the limits of integration.

As the original limits of integration are 0 and \pi, we need to express the new limits of integration in terms of u.

When x = 0, u = \sin(0) = 0

When x = \pi, u = \sin(\pi) = 0

Thus, the new limits of integration are from 0 to 0.

Step 4: Evaluate the integral.

Since the new limits of integration are the same, the integral evaluates to zero:

\int_{0}^{0} \frac{x}{a^2 + (b^2 - a^2)u^2} \frac{du}{\cos(x)} = 0

Therefore, the value of the given integral is zero

\green {\mathfrak{hope \: it's \:help \: You }}

 \boxed{ please \: follow \:me \: friends\: ♡♡ }  \red{thank \: you♡♡\: dear ....} {\mathscr{\fcolorbox{navy}{black}{\color{red}{take\: care \: ✧⁠*⁠。(⁠◍⁠•⁠ᴗ⁠•⁠◍⁠)⁠}}}}\huge\mathcal{\fcolorbox{grey}{black}{{{\red{◍attitude\: boy◍}}}}}

Similar questions