If a:b = c:d then prove that, (a²+c²)(b²+d²) = (ab+cd)²
Wrong Answer will be reported.✓
Answers
Answer:-
Given:
a : b = c : d
⟶ a/b = c/d
On cross multiplication we get,
⟶ ad = bc
⟶ ad - bc = 0 -- equation (1)
We have to prove:
(a² + c²) * (b² + d²) = (ab + cd)²
using (a + b)² = a² + b² + 2ab in RHS we get,
⟶ a² (b² + d²) + c² (b² + d²) = (ab)² + (cd)² + 2abcd
⟶ a²b² + a²d² + b²c² + c²d² = (ab)² + (cd)² + 2abcd
Using aⁿ * bⁿ = (ab)ⁿ we get,
⟶ (ab)² + (ad)² + (bc)² + (cd)² - (ab)² - (cd)² - 2abcd = 0
⟶ (ad)² + (bc)² - 2abcd = 0
using (a - b)² = a² + b² - 2ab we get,
⟶ (ad - bc)² = 0
⟶ ad - bc = 0
Putting the value of ad - bc from equation (1) we get,
⟶ 0 = 0.
Hence, Proved.
☘ Given Question :-
If If a:b = c:d then prove that, (a²+c²)(b²+d²) = (ab+cd)².
☘ Solution :-
a : b = c : d.
So, We can say,
a/b = c/d.
By Cross Multiplying, We get,
➙ ad - bc = 0.
LHS ⇒
(a²+c²)(b²+d²)
On Further Multiplying, We get,
➙ a²b² + a²d² + b²c² + c²d²
➙ (ab)² + (ad)² + (bc)² + (cd)²
RHS ⇒
(ab + cd)²
We can use identity :- (a+b)² = a² + b² + 2ab.
On Further Calculation, We get,
➙ (ab)² + (cd)² + 2abcd.
➙ a²b² + c²d² + 2abcd.
➙ (ab)² + (cd)² + 2abcd.
Putting them equal,
(ab)² + (ad)² + (bc)² + (cd)² = (ab)² + (cd)² + 2abcd.
➙ (ad)² + (bc)² = 2abcd.
➙ (ad)² + (bc)² – 2abcd = 0.
➙ (ad - bc)² = 0.
➙ 0² = 0.
➙ 0 = 0.
LHS = RHS.