Math, asked by prince5132, 9 months ago


\mathbb{PROVE  \:  \: QUESTION} \\ \\ \longrightarrow \rm \cos^{2} x + \cos ^{2} \bigg\{ x + \dfrac{\pi}{3} \bigg\} + \cos^{2} \bigg\{ x - \dfrac{\pi}{3} \bigg \} =  \dfrac{3}{2} \  \textless \ br /\  \textgreater \  \\  \\ \  \textless \ br /\  \textgreater \ \mathbb{NOTE \:  IRRELEVANT \:  ANSWER \:  WILL \:  BE  \: REPORTED}

Answers

Answered by BrainlyPopularman
78

TO PROVE :

 \bf \longrightarrow  \cos^{2} x + \cos ^{2} \left\{ x + \dfrac{\pi}{3} \right\} + \cos ^{2} \left\{ x  -  \dfrac{\pi}{3} \right\}  = \dfrac{3}{2}

SOLUTION :

• Let's take L.H.S. –

 \bf  =   \cos^{2} x + \cos ^{2} \left\{ x + \dfrac{\pi}{3} \right\} + \cos ^{2} \left\{ x  -  \dfrac{\pi}{3} \right\}

• Using identity –

 \bf  \implies  \cos{2 \theta}  = 2 { \cos}^{2}{ \theta}  - 1

 \bf  \implies { \cos}^{2}{ \theta} =  \dfrac{1 +\cos{2 \theta}}{2}

• So that –

 \bf  =  \dfrac{1 +  \cos(2x) }{2}  + \dfrac{1 +  \cos \left(2\left\{ x + \dfrac{\pi}{3} \right\} \right) }{2}   +\dfrac{1 +  \cos \left(2\left\{ x  -  \dfrac{\pi}{3} \right\} \right) }{2}

 \bf  =  \dfrac{1 +  \cos(2x) }{2}  + \dfrac{1 +  \cos \left(2x + \dfrac{2\pi}{3} \right) }{2} +\dfrac{1 +  \cos \left(2x  -  \dfrac{2\pi}{3} \right) }{2}

 \bf  =  \dfrac{1}{2} \left  \{ 1 +  \cos(2x) + 1 +  \cos \left(2x + \dfrac{2\pi}{3} \right)+1 +  \cos \left(2x  -  \dfrac{2\pi}{3} \right) \right \}

 \bf  =  \dfrac{1}{2} \left  \{ 3+  \cos(2x) +  \cos \left(2x + \dfrac{2\pi}{3} \right)+  \cos \left(2x  -  \dfrac{2\pi}{3} \right) \right \}

• Using identity –

 \bf  \implies  \cos(x) +  \cos(y)   = 2 \cos \left( \dfrac{x + y}{2}  \right) \cos \left( \dfrac{x -  y}{2}  \right)

 \bf  =  \dfrac{1}{2} \left  \{ 3+  \cos(2x) +  2\cos \left( \dfrac{2x + \dfrac{2\pi}{3} +2x  -  \dfrac{2\pi}{3}}{2} \right) \cos \left( \dfrac{2x + \dfrac{2\pi}{3}  - 2x  + \dfrac{2\pi}{3}}{2} \right) \right \}

 \bf  =  \dfrac{1}{2} \left  \{ 3+  \cos(2x) +  2\cos \left( 2x \right)\cos \left(\dfrac{2\pi}{3} \right) \right \}

• We know that –

 \bf \implies \cos \left(\dfrac{2\pi}{3} \right) =  -  \dfrac{1}{2}

• So that –

 \bf  =  \dfrac{1}{2} \left  \{ 3+  \cos(2x) +  2\cos \left( 2x \right) \left( - \dfrac{1}{2} \right) \right \}

 \bf  =  \dfrac{1}{2} \left  \{ 3+  \cos(2x)  - \cos \left( 2x \right)\right \}

 \bf  =  \dfrac{1}{2} \left  \{ 3\right \}

 \bf  =  \dfrac{3}{2}

 \bf  = R.H.S.

 \bf \:  \:  \:  \:  \:  \:  \:  { \underline{ \underline{ \bf Hence \:  \: proved}}}

Answered by amansharma264
44

EXPLANATION.

FORMULA USED.

 1) =  \bold{\cos(2x)  = 2 \cos {}^{2}x \:  - 1}

 \bold{2) = \cos {}^{2} (x) =  \frac{ 1 +  \cos(2x) }{2}   }

 \bold{3) =  \cos(x)  +  \cos(y)  = 2 \cos( \frac{x + y}{2}) \cos( \frac{x - y}{2} )  ) }

 \bold{4 ) =  \cos(\pi \:  -  \:  \theta)  =  -  \cos(  \theta) }

Note = For solution see the image

attachment.

Attachments:
Similar questions