Math, asked by ItzShizuka50, 1 day ago

 \mathbb \purple{QUESTION : }
Find the compound interest on 15,625 for 18 months at the rate of 8 % p.a. . Find the compounded Semi-annually.

Answer this Question
by explanation ...

Give answers in best way ..​

Answers

Answered by Anonymous
29

Given :

  • Principal = Rs.15625
  • Time = 18 months
  • Rate = 8 %

 \\ {\underline{\rule{200pt}{3pt}}}

To Find :

  • Compound Interest = ?

 \\ {\underline{\rule{200pt}{3pt}}}

Solution :

~ Formula Used :

 {\color{cyan}{\bigstar}} \: \: {\underline{\boxed{\red{\sf{ C.I = P \bigg[ 1 + \dfrac{R}{200} \bigg]^{2n} - P }}}}}

Where :

  • A = Amount = ?
  • Principal = Rs.15625
  • R = Rate = 8 %
  • T = Time = 18 Months or 1.5 years

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Compound Interest :

 \; \; \dashrightarrow \sf  \: \: \: { C.I = P \bigg[ 1 + \dfrac{R}{200} \bigg]^{2n} - P }

 \; \; \dashrightarrow \sf \: \: \: { C.I = 15625 \bigg[ 1 + \dfrac{8}{200} \bigg]^{2 \times 1.5} - 15625 }

 \; \; \dashrightarrow \sf \: \: \: { C.I = 15625 \bigg[ 1 + \cancel\dfrac{8}{200} \bigg]^{2 \times 1.5} - 15625 }

 \; \; \dashrightarrow \sf \: \: \: { C.I = 15625 \bigg[ 1 + 0.04 \bigg]^{2 \times 1.5} - 15625 }

 \; \; \dashrightarrow \sf \: \: \: { C.I = 15625 \bigg[ 1.04 \bigg]^{2 \times 1.5} - 15625 }

 \; \; \dashrightarrow \sf \: \: \: { C.I = 15625 \bigg[ 1.04 \bigg]^{3} - 15625 }

 \; \; \dashrightarrow \sf \: \: \: { C.I = 15625 \times 1.04 \times 1.04 \times 1.04 - 15625 }

 \; \; \dashrightarrow \sf \: \: \: { C.I = 15625 \times 1.124864 - 15625 }

 \; \; \dashrightarrow \sf \: \: \:  { C.I = 17576  - 15625 }

 {\qquad{\textsf{ Compound Interest on this sum of Money = {\orange{\sf{₹ \; 1951 }}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Therefore :

 \large{\pink{\underline{\color{darkblue}{\underline{\pmb{\frak{ Compound \; Interest = ₹ \; 1951 }}}}}}}

 \\ {\underline{\rule{300pt}{9pt}}}

Answered by Anonymous
45

Answer:

Given :-

  • A sum of Rs 15,625 for 18 months at the rate of 8% p.a.

To Find :-

  • What is the compound interest semi-annually.

Formula Used :-

\clubsuit Amount Formula :

\longrightarrow \sf\boxed{\bold{\pink{A =\: P\Bigg(1 + \dfrac{\dfrac{r}{2}}{100}\Bigg)^{2n}}}}\\

where,

  • A = Amount
  • P = Principal
  • r = Rate of Interest
  • n = Time Period

\bigstar Compound Interest Formula :

\longrightarrow \sf\boxed{\bold{\pink{Compound\: Interest =\: A - P}}}\\

where,

  • A = Amount
  • P = Principal

Solution :-

Given :

  • Principal = Rs 15625
  • Time = 18 months = 18/12 years = 3/2 years
  • Rate of Interest = 8% p.a

According to the question by using the formula we get,

\implies \sf A =\: 15625\Bigg(1 + \dfrac{\dfrac{\cancel{8}}{\cancel{2}}}{100}\Bigg)^{(\cancel{2} \times \frac{3}{\cancel{2}})}\\

\implies \sf A =\: 15625\bigg(1 + \dfrac{4}{100}\bigg)^3\\

\implies \sf A =\: 15625\bigg(\dfrac{100 + 4}{100}\bigg)^3

\implies \sf A =\: 15625\bigg(\dfrac{104}{100}\bigg)^3

\implies \sf A =\: 15625\bigg(\dfrac{104}{100} \times \dfrac{104}{100} \times \dfrac{104}{100}\bigg)

\implies \sf A =\: 15625\bigg(\dfrac{1124864}{1000000}\bigg)

\implies \sf A =\: 15625 \times \dfrac{1124864}{1000000}

\implies \sf A =\: \dfrac{17576\cancel{000000}}{1\cancel{000000}}

\implies \sf\bold{\purple{A =\: Rs\: 17576}}

Now, we have to find the compound interest :

Given :

  • Amount = Rs 17576
  • Principal = Rs 15625

According to the question by using the formula we get,

\dashrightarrow \sf Compound\: Interest =\: Rs\: 17576 - Rs\: 15625\\

\dashrightarrow \sf\bold{\red{Compound\: Interest =\: Rs\: 1951}}\\

\therefore The compound interest is Rs 1951 .

Similar questions