If sec θ + tan θ = p, find cosec θ.
Explainatory answer needed.
Answers
Answered by
21
Solution :
Given that,
secθ + tanθ = p ...(i)
By identity property of Trigonometry, we know that
sec²θ - tan²θ = 1
⇒ (secθ + tanθ) (secθ - tanθ) = 1
⇒ p (secθ - tanθ) = 1, by (i)
⇒ secθ - tanθ = ...(ii)
Now, adding (i) and (ii) no. equations, we get
2 secθ = p +
⇒ secθ =
⇒ cosθ =
Now, sin²θ = 1 - cos²θ
= 1 -
= 1 -
=
=
=
=
⇒ sinθ =
⇒ cosecθ =
Useful identities :
1. sinθ * cosecθ = 1
2. sin²θ + cos²θ = 1
3. cosθ * secθ = 1
4. a² - b² = (a + b) (a - b)
#MarkAsBrainliest
Given that,
secθ + tanθ = p ...(i)
By identity property of Trigonometry, we know that
sec²θ - tan²θ = 1
⇒ (secθ + tanθ) (secθ - tanθ) = 1
⇒ p (secθ - tanθ) = 1, by (i)
⇒ secθ - tanθ = ...(ii)
Now, adding (i) and (ii) no. equations, we get
2 secθ = p +
⇒ secθ =
⇒ cosθ =
Now, sin²θ = 1 - cos²θ
= 1 -
= 1 -
=
=
=
=
⇒ sinθ =
⇒ cosecθ =
Useful identities :
1. sinθ * cosecθ = 1
2. sin²θ + cos²θ = 1
3. cosθ * secθ = 1
4. a² - b² = (a + b) (a - b)
#MarkAsBrainliest
Swarup1998:
Great answer! :)
Answered by
31
Solution :
Convert Sec and tan in sin and cos
We Know that ,
⇒ sec θ =
⇒ tan θ =
⇒ + = p
Taking Cos θ Common
⇒
Squaring both the Sides
⇒
⇒ =
⇒
⇒
⇒
Let x is equal to Sin θ
⇒
⇒
⇒
Since we obtained a quadratic equation we need to solve by Quadratic formula or any other method which is easier for the above quadratic equation
⇒
⇒
⇒
⇒
Put x = Sin θ
⇒
For Taking Positive Sign
⇒ Sin θ =
As we know ,
Cosec θ =
⇒
For Taking Negative Sign
⇒ Sin θ = -1
As we know ,
Cosec θ =
⇒
⇒ -1
Similar questions