Math, asked by Mylo2145, 1 year ago


\mathbb{ \tt{ \underline { \underline{CBSE \: CLASS - X}}}}
 \sf{ \underline{Trigonometry}}

If sec θ + tan θ = p, find cosec θ.

Explainatory answer needed.

Answers

Answered by MarkAsBrainliest
21
Solution :

Given that,

secθ + tanθ = p ...(i)

By identity property of Trigonometry, we know that

sec²θ - tan²θ = 1

⇒ (secθ + tanθ) (secθ - tanθ) = 1

⇒ p (secθ - tanθ) = 1, by (i)

⇒ secθ - tanθ = \frac{1}{p} ...(ii)

Now, adding (i) and (ii) no. equations, we get

2 secθ = p + \frac{1}{p}

⇒ secθ = \frac{p^{2}+1}{2p}

⇒ cosθ = \frac{2p}{p^{2}+1}

Now, sin²θ = 1 - cos²θ

= 1 - (\frac{2p}{p^{2}+1})^{2}

= 1 - \frac{4p^{2}}{p^{4}+2p^{2}+1}

= \frac{p^{4}+2p^{2}+1-4p^{2}}{p^{4}+2p^{2}+1}

= \frac{p^{4}-2p^{2}+1}{p^{4}+2p^{2}+1}

= \frac{(p^{2}-1)^{2}}{(p^{2}+1)^{2}}

= (\frac{p^{2}-1}{p^{2}+1})^{2}

⇒ sinθ = \frac{p^{2}-1}{p^{2}+1}

⇒ cosecθ = \frac{p^{2}+1}{p^{2}-1}

Useful identities :

1. sinθ * cosecθ = 1

2. sin²θ + cos²θ = 1

3. cosθ * secθ = 1

4. a² - b² = (a + b) (a - b)

#MarkAsBrainliest

Swarup1998: Great answer! :)
Answered by FuturePoet
31

Solution :



Convert Sec \theta and tan \theta in  sin  \theta and cos  \theta

We Know that ,

⇒  sec θ = \frac{1}{Cos\theta}

⇒  tan θ = \frac{Sin\theta}{Cos\theta}

⇒  \frac{1}{Cos\theta} +  \frac{Sin\theta}{Cos\theta} = p

Taking Cos θ Common

\frac{1 + Sin\theta}{Cos\theta}= p


Squaring both the Sides

(\frac{1 + Sin\theta}{Cos\theta})^2= (p)^2

\frac{1 +\ Sin^2\theta \ + 2Sin^2\theta}{Cos^2\theta} = p^2

{1 +\ Sin^2\theta + 2 Sin\theta = p^2 * Cos^2\theta

{1 +\ Sin^2\theta + 2 Sin\theta = p^2 * ( 1 - Sin^2\theta )

{1 +\ Sin^2\theta + 2 Sin\theta = p^2- p^2 \ Sin^2\theta


Let x is equal to Sin θ

1 + x^2 + 2x = p^2 - p^2 x^2

x^2 + p^2x^2 + 2x + 1 - p^2 = 0

(1 - p^2)x^2+ 2x + (1 - p)^2 = 0


Since we obtained a quadratic equation we need to solve by Quadratic formula or any other method which is easier for the above quadratic equation

\displaystyle x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

\displaystyle x=\frac{-2\pm\sqrt{4-4(1 + p^2) (1 -p^2)}}{2(1 +p^2)}

⇒  \displaystyle x=\frac{-2\pm\sqrt{4} \sqrt{1 - (1 + p^2) (1 -p^2)}}{2(1 +p^2)}

\displaystyle x=\frac{-1\pm\sqrt{ p^4}}{(1 + p^2)}

x = \frac{-1 \ \pm \ p^2}{(1+ p^2)}

Put x = Sin θ

⇒   Sin =\frac{-1 \ \pm \ p^2}{(1+ p^2)}


For Taking Positive Sign

Sin\theta = \frac{-1 + p^2}{(1 + p^2)}

⇒  Sin θ = \frac{p^2 - 1}{p^2 + 1}

As we know ,

Cosec  θ = \frac{1}{Sin\theta}

\frac{p^2 + 1}{p^2 - 1}


For Taking Negative Sign

Sin\theta= \frac{-1 - p^2}{(1 + p^2)}

⇒   Sin θ = -1

As we know ,

Cosec  θ = \frac{1}{Sin\theta}

\frac{1}{-1}

⇒ -1


CoolestCat015: Woooooooow ! : O
FuturePoet: Thanks!
Swarup1998: Great answer! :)
brainusers14: Great answer!! Superb✌✌
sowmiya35: awesome
Similar questions