Math, asked by King412, 1 month ago


 \\  \mathbf{QUESTION} : -  \\
The value of \rm \:  \dfrac{1}{ log_{2}n }  +  \dfrac{1  }{log_{3}n}  +  \dots +  \dfrac{1}{ log_{43}n }  is

Answers

Answered by VεnusVεronίcα
51

 \red{ \large  \qquad   \underline{\underline{   \pmb{\sf Some \: important \: formulae : }}}}

 \:

{ \color{blue}\qquad  \dashrightarrow \:  {\pmb{ \sf{ log \: _{a} \: (mn) =  log \:  _{a} \: m +  log \: _{a} \: n}}}}

 \:

  \color{blue}{\qquad  \dashrightarrow \: \pmb{ \sf{  \:  log \: _{a}  \dfrac{m}{n}  =  log \: _{a} \: m -  log \: _{a} \: n }}}

 \:

 \color{blue}{{ \qquad \dashrightarrow \: \pmb{ \sf{ log \: _{a} \: {m}^{n}   = n \:  log \: _{a} \: m  }} }}

 \:

 \color{blue}{ \qquad \dashrightarrow \:  \pmb{ \sf{ log \: _{a} \: m =  \dfrac{ log \: _{b} \: m }{ log \: _{b} \: a} }}}

 \:

 \color{blue}{ \qquad \dashrightarrow \:  \pmb{ \sf{ log \: _{a} \: a =1 }}}

  \:

 \color{blue}{ \qquad \dashrightarrow \:  \pmb{ \sf{ {a}^{  \: log \: _{a} \: m} = m }}}

 \:

 \color{blue}{ \qquad \dashrightarrow \:  \pmb { \sf{ log \: _{a} \: 1 = 0}}}

 \:

Attachments:
Answered by studylover001
29

Answer in the attachment.

Hope it helps you :)

Attachments:
Similar questions