Answers
Answer:
pls follow me
Step-by-step explanation:
mark as brainlist❤ ❤
1 - √2 , 1 , 1 + √2 are the solutions
Step-by-step explanation:
Let say x² - 2x = n
(2 + √3)ⁿ⁺¹ + (2 - √3)ⁿ⁻¹ = 4/(2 - √3)
=> (2 + √3)ⁿ(2 + √3) + (2 - √3)ⁿ/(2- √3) = 4/(2 - √3)
Multiplying both sides by (2 - √3)
=> (2 + √3)ⁿ(2 + √3)(2 - √3) + (2 - √3)ⁿ = 4
=> (2 + √3)ⁿ + (2 - √3)ⁿ = 4
2 + √3 = 1/(2 - √3) or 2 - √3 = 1/(2+ √3)
=> (2 + √3)ⁿ + 1/(2 + √3)ⁿ = 4
let say (2 + √3)ⁿ = a
=> a + 1/a = 4
=> a² + 1 = 4a
=> a² - 4a + 1 = 0
=> a = (4 ± √16 - 4)/2
=> a = 2 ± √3
a = 2 + √3
=> (2 + √3)ⁿ = (2 + √3)
=> n = 1
=> x² - 2x = 1
=> x² - 2x - 1 = 0
=> x = (2 ± √4 + 4)/2
=> x = 1 ± √2
a = 2 -√3
=> (2 + √3)ⁿ = (2 - √3)
=> (2 + √3)ⁿ = 1/ (2 +√3)
=> (2 + √3)ⁿ = (2 +√3)⁻¹
=> n = - 1
=> x² - 2x = -1
=> x² - 2x + 1 = 0
=> (x - 1)² = 0
=> x = 1
1 - √2 , 1 , 1 + √2 are the solutions
Learn more:
Slove this quadratic equations X³+3X²+2X=289 - Brainly.in
https://brainly.in/question/7483531
If one root of the quadratic equation kx^2-3x-1=0 is 1/2 the find value ...
https://brainly.in/question/7551719