Math, asked by Anonymous, 11 months ago


 \mathfrak{Find \: the \: solution \: of}
 \mathsf{ {(2 +  \sqrt{3} )}^{ {x}^{2}  - 2x + 1}  +  {(2 -   \sqrt{3} )}^{ {x}^{2}  - 2x - 1} =  \dfrac{4}{2 -  \sqrt{3} }  }

Answers

Answered by umiko28
4

Answer:

pls follow me

Step-by-step explanation:

mark as brainlist

Attachments:
Answered by amitnrw
2

1 - √2 ,  1  , 1  + √2  are the solutions

Step-by-step explanation:

Let say x² - 2x  = n

(2 + √3)ⁿ⁺¹  + (2 - √3)ⁿ⁻¹  = 4/(2 - √3)

=> (2 + √3)ⁿ(2 + √3)  + (2 - √3)ⁿ/(2-  √3)  = 4/(2 - √3)

Multiplying both sides by (2 - √3)

=> (2 + √3)ⁿ(2 + √3)(2 - √3) +  (2 - √3)ⁿ = 4

=>  (2 + √3)ⁿ + (2 - √3)ⁿ = 4

2 + √3  = 1/(2 - √3)    or 2 - √3 = 1/(2+ √3)

=>   (2 + √3)ⁿ + 1/(2 + √3)ⁿ = 4

let say  (2 + √3)ⁿ = a

=> a + 1/a  = 4

=> a² + 1 = 4a

=> a² - 4a + 1 = 0

=> a = (4 ± √16 - 4)/2

=> a = 2 ± √3

a = 2 + √3

=>  (2 + √3)ⁿ  = (2 + √3)

=> n = 1

=>  x² - 2x  = 1

=> x² - 2x  - 1 = 0

=> x  = (2 ± √4 + 4)/2

=> x =  1 ± √2

a = 2 -√3

=>  (2 + √3)ⁿ  = (2 - √3)

=> (2 + √3)ⁿ  = 1/ (2 +√3)

=>  (2 + √3)ⁿ  = (2 +√3)⁻¹

=> n = - 1

=>  x² - 2x  = -1

=> x² - 2x  + 1 = 0

=> (x - 1)² = 0

=> x =  1

1 - √2 ,  1  , 1  + √2  are the solutions

Learn more:

Slove this quadratic equations X³+3X²+2X=289 - Brainly.in

https://brainly.in/question/7483531

If one root of the quadratic equation kx^2-3x-1=0 is 1/2 the find value ...

https://brainly.in/question/7551719

Similar questions