Math, asked by Anonymous, 6 days ago


\mathfrak\green{Question:-}

 \longmapsto\rm{Evaluate \:  \displaystyle \int ^{2\pi}  _{0}  \rm | \sin(x) | \:  dx}



• No spam​

Answers

Answered by mathdude500
24

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle \int ^{2\pi} _{0} \rm | sinx | \: dx \\

can be rewritten as

\rm \:  =  \: \displaystyle \int ^{\pi} _{0} \rm | sinx | \: dx + \displaystyle \int ^{2\pi} _{\pi} \rm | sinx | \: dx \\

\bigg[\rm  \because \: \displaystyle \int ^{b} _{a} f(x) dx  = \displaystyle \int ^{c} _{a} f(x)dx +  \displaystyle \int ^{b} _{c} f(x) dx \:  \: (a \leqslant c \leqslant b )\: \bigg] \\

We know,

By definition of Modulus function

\begin{gathered}\begin{gathered}\bf\:  |x|  = \begin{cases} &\sf{ \:  \: x \:  \: if \:  \: x  \geqslant 0}  \\ \\ &\sf{ - x \: if \: x \:  <  \: 0} \end{cases}\end{gathered}\end{gathered} \\

So, by using this definition

\begin{gathered}\begin{gathered}\bf\:  |sinx|  = \begin{cases} &\sf{ \:  \: sinx \:  \: if \:  \: 0 \leqslant x \leqslant \pi}  \\ \\ &\sf{ - sinx \: if \: \pi \leqslant x \leqslant 2\pi} \end{cases}\end{gathered}\end{gathered} \\

So, using this result, the above expression can be rewritten as

\rm \:  =  \: \displaystyle \int ^{\pi} _{0} \rm sinx  \: dx  -  \displaystyle \int ^{2\pi} _{\pi} \rm  sinx \: dx \\

We know,

\boxed{\sf{  \:\displaystyle \int \rm \: \: sinx \: dx \:  =  \:  -  \: cosx \:  +  \: c \: }} \\

So, using this result, we get

\rm \: =  \:\bigg( - cosx\bigg)^{\pi} _{0} - \bigg(  -cosx \bigg)^{2\pi} _{\pi}

\rm \: =  \: -  \: \bigg(cosx\bigg)^{\pi} _{0}  +  \bigg(cosx \bigg)^{2\pi} _{\pi} \\

\rm \: =  \:  - (cos\pi - cos0) + (cos2\pi - cos\pi) \\

We know,

\boxed{\sf{  \: \: cosn\pi \:  =  \:  {( - 1)}^{n}  \:  \: }} \\

So, using this, we get

\rm \: =  \:  - ( - 1 - 1) + (1 + 1) \\

\rm \: =  \: 2 + 2 \\

\rm \: =  \: 4 \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: \displaystyle \int ^{2\pi} _{0} \rm | \sin(x) | \: dx \:  =  \: 4 \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

\boxed{\sf{  \:\displaystyle \int ^{a} _{0} f(x)dx = \displaystyle \int ^{a} _{0} f(a - x) \: dx \: }} \\

\boxed{\sf{  \:\displaystyle \int ^{b} _{a} f(x)dx = \displaystyle \int ^{b} _{a} f(a  + b- x) \: dx \: }} \\

\boxed{\sf{  \:\displaystyle \int ^{b} _{a} f(x)dx = \displaystyle \int ^{b} _{a} f(y) \: dy \: }} \\

\boxed{\sf{  \:\displaystyle \int ^{b} _{a} f(x)dx = -  \:  \displaystyle \int ^{a} _{b} f(x) \: dx \: }} \\

\boxed{\sf{  \:\displaystyle \int ^{a} _{ - a} f(x)dx = \:  2\displaystyle \int ^{a} _{0} f(x) \: dx \:\rm \: if \: f( - x) = f(x) }} \\

\boxed{\sf{  \:\displaystyle \int ^{ a} _{ - a} f(x)dx = \:  0 \:\rm \: if \: f( - x) =  - f(x) }} \\

\boxed{\sf{  \:\displaystyle \int ^{2a} _{  0} f(x)dx = \:  2\displaystyle \int ^{a} _{0} f(x) \: dx \:\rm \: if \: f( 2a- x) = f(x) }} \\

\boxed{\sf{  \:\displaystyle \int ^{ 2a} _{0} f(x)dx = \:  0 \:\rm \: if \: f(2a - x) =  - f(x) }} \\

Answered by maheshtalpada412
10

 \color{green} \begin{array} {l}\text{We know that \( \sin x \) is positive, when \( 0 \leq x \leq \pi \)}  \\ \text{ and \( \sin x \) is negative when \( \pi \leq x \leq 2 \pi \).}  \end{array}

 \red{ \tt\therefore \quad|\sin x|=\left\{\begin{aligned} \tt \sin x, & \text { when } \tt 0 \leq x \leq \pi \\ \tt-\sin x, & \text { when } \tt \pi \leq x \leq 2 \pi . \end{aligned}\right.}

 \color{darkcyan}\begin{aligned} \tt \therefore \int_{0}^{2 \pi}|\sin x| d x & \tt=\int_{0}^{\pi}|\sin x| d x+\int_{\pi}^{2 \pi}|\sin x| d x \\ \\   & \tt=\int_{0}^{\pi} \sin x d x+\int_{\pi}^{2 \pi}(-\sin x) d x \\ \\  & \tt=\bigg[-\left.\cos x\bigg]_{0} ^{\pi}+ \bigg[\cos x \bigg]_{\pi}^{2 x}=(2+2)=4 \right.\end{aligned}

Similar questions