Math, asked by shukurenai78, 3 months ago

 \mathfrak{ \large{ \red{ \underbrace{Question}}}}
 \sf{ \bold{q.(1)} \: if \: x = \frac{4ab}{a + b} \: \: show \: that \ratio - } \\ \\ \sf{ \bold{\frac{x + 2a}{x - 2a} + \frac{x + 2b}{x - 2b} }}
 \sf{ \bold{q.(2)}} \: if \: x = \frac{ \sqrt[3]{m + 1 } + \sqrt[3]{m - 1} }{ \sqrt[3]{m + 1} - \sqrt[3]{m - 1} } \: prove \: that \ratio - \\ \\ \sf{ \bold{ \: {x}^{3} - 3m {x}^{2} + 3x - m = 0}}

 \large{ \red{ \sf{note}}}

 \rightarrow {\rm{proper \: answer \: with \: explanation \: needed}}
 \rightarrow{ \rm{spam = 10 \: answer \: report}}

Answers

Answered by mathdude500
13

Basic Concept Used :-

\rm :\longmapsto\:If \: \dfrac{a}{b}  = \dfrac{c}{d}  \: then

\boxed{ \bf \: \dfrac{a + b}{b}  = \dfrac{c + d}{d}  \:  \: \: is \: called \: componendo}

\boxed{ \bf \: \dfrac{a  - b}{b}  = \dfrac{c  -  d}{d}  \:  \: \: is \: called \: dividendo}

\boxed{ \bf \: \dfrac{a + b}{a - b}  = \dfrac{c + d}{c - d}\: is \: called \: componendo \: and \: dividendo}

\large\underline{\sf{Solution-1}}

Given that

\rm :\longmapsto\:x = \dfrac{4ab}{a + b}

\rm :\longmapsto\:x = \dfrac{2a \times 2b}{a + b}

\rm :\longmapsto\:\dfrac{x}{2a}  = \dfrac{2b}{a + b}

Apply Componendo and Dividendo, we get

\rm :\longmapsto\:\dfrac{x + 2a}{x - 2a}  = \dfrac{2b + a + b}{2b - (a + b)}

\rm :\longmapsto\:\dfrac{x + 2a}{x - 2a}  = \dfrac{3b + a}{b - a}  -  -  - (1)

Again,

We have

\rm :\longmapsto\:x = \dfrac{4ab}{a + b}

\rm :\longmapsto\:x = \dfrac{2a \times 2b}{a + b}

\rm :\longmapsto\:\dfrac{x}{2b}  = \dfrac{2a}{a + b}

On applying Componendo and Dividendo, we get

\rm :\longmapsto\:\dfrac{x + 2b}{x - 2b}  = \dfrac{2a + a + b}{2a - (a + b)}

\rm :\longmapsto\:\dfrac{x + 2b}{x - 2b}  = \dfrac{3a+ b}{a -b}  -  -  - (2)

On adding equation (1) and equation (2), we get

\rm :\longmapsto\:\dfrac{x + 2a}{x - 2a}  + \dfrac{x + 2b}{x - 2b}  =\dfrac{3b + a}{b - a}  +  \dfrac{3a+ b}{a -b}

\rm :\longmapsto\:\dfrac{x + 2a}{x - 2a}  + \dfrac{x + 2b}{x - 2b}  =\dfrac{3b + a}{b - a}   -   \dfrac{3a+ b}{b - a}

\rm :\longmapsto\:\dfrac{x + 2a}{x - 2a}  + \dfrac{x + 2b}{x - 2b}  =\dfrac{3b + a - 3a - b}{b - a}

\rm :\longmapsto\:\dfrac{x + 2a}{x - 2a}  + \dfrac{x + 2b}{x - 2b}  =\dfrac{2b  - 2a}{b - a}

\rm :\longmapsto\:\dfrac{x + 2a}{x - 2a}  + \dfrac{x + 2b}{x - 2b}  =\dfrac{2 \:  \: \cancel{(b  - a)}}{\cancel{b - a}}

\bf\implies \:\:\dfrac{x + 2a}{x - 2a}  + \dfrac{x + 2b}{x - 2b}  =2

{\boxed{\boxed{\bf{Hence, Proved}}}}

\large\underline{\sf{Solution-2}}

\rm\: x = \dfrac{ \sqrt[3]{m + 1 } + \sqrt[3]{m - 1} }{ \sqrt[3]{m + 1} - \sqrt[3]{m - 1} }

can be rewritten as,

\rm :\longmapsto\:\dfrac{x}{1}  = \dfrac{ \sqrt[3]{m + 1 } + \sqrt[3]{m - 1} }{ \sqrt[3]{m + 1} - \sqrt[3]{m - 1} }

On applying Componendo and Dividendo, we get

\rm \:\dfrac{x+1}{x-1}= \dfrac{\sqrt[3]{m+1}+\cancel{\sqrt[3]{m-1}}+ \sqrt[3]{m + 1}-\cancel{\sqrt[3]{m - 1}}}{\cancel{\sqrt[3]{m + 1}} + \sqrt[3]{m - 1}-\cancel{\sqrt[3]{m + 1}}+\sqrt[3]{m - 1}}

\rm \:\dfrac{x+1}{x-1}= \dfrac{\cancel{2} \: \sqrt[3]{m+1}}{\cancel{2} \: \sqrt[3]{m - 1}}

On cubing both sides, we get

\rm :\longmapsto\:\dfrac{ {(x + 1)}^{3} }{ {(x - 1)}^{3} }  = \dfrac{m + 1}{m - 1}

\rm :\longmapsto\:\dfrac{ {x}^{3} +  {1}^{3} + 3x(x + 1)  }{ {x}^{3} -  {(1)}^{3} - 3x(x - 1)}  = \dfrac{m + 1}{m - 1}

 \bigg \{\pink{\rm\because\: {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)} \\ \pink{\rm\because\: {(x  -  y)}^{3} =  {x}^{3}  -   {y}^{3}  -  3xy(x  -  y)} \bigg \}

\rm :\longmapsto\:\dfrac{ {x}^{3} +1+  {3x}^{2}  + 3x}{ {x}^{3} -1 -  {3x}^{2} + 3x }  = \dfrac{m + 1}{m - 1}

\rm :\longmapsto\:\dfrac{ ({x}^{3}  +  {3x}) + ( {3x}^{2}  + 1) }{( {x}^{3} +  {3x}) - ( {3x}^{2} + 1)}  = \dfrac{m + 1}{m - 1}

On applying Componendo and Dividendo, we get

\rm :\longmapsto\:\dfrac{ {x}^{3}  +  {3x}}{ {3x}^{2} + 1}  = \dfrac{m}{1}

\rm :\longmapsto\: {x}^{3}  +  {3x}  = 3m {x}^{2}  + m

\bf\implies \: {x}^{3} -  {3mx}^{2}  +  3x - m = 0

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

\rm :\longmapsto\:If \: \dfrac{a}{b}  = \dfrac{c}{d}  \: then

\boxed{ \bf \: \dfrac{a}{c}  = \dfrac{b}{d} \: is \: called \: alternendo}

\boxed{ \bf \: \dfrac{b}{a}  = \dfrac{d}{c} \: is \: called \: invertendo}

Similar questions