Let A = {1,2,3 ...... 14} Define a relation from A to A by R = {(x,y): 3x - y = 0 , Where x, y A}.
Write down its domain, codomain and range.
No spams !!!
Answers
Answer:
Domain = { 1 , 2 , 3 , 4 }
Range = { 2 , 6 , 9 , 12 }
Codomain = A i.e . { 1 , 2 , 3 ...... 14 } .
Step-by-step explanation:
Given :
Set A = { 1 , 2 , 3 ...... 14 }
And it is defined by relation R = { ( x , y ) : 3 x - y = 0 , Where x, y ∈ A }.
We have to find domain, co domain and range of R.
Well firstly we should know what are they :
Domain : First element of cartesian product defined by any relation .
Range : Second element of cartesian product defined by any relation .
Co domain : Whole second of the any relation .
Coming back to question :
A = { 1 , 2 , 3 ...... 14 }
R = { ( x , y ) : 3 x - y = 0 , Where x, y ∈ A }
3 x - y = 0
3 x = y
when x = 1 then y = 3
when x = 2 then y = 6
when x = 3 then y = 9
when x = 4 then y = 12
After that y value will be come 15 which is not belongs to set A .
R = { ( 1 , 2 ) , ( 2 , 6 ) , ( 3 , 9 ) , ( 4 , 12 ) }
Domain = { 1 , 2 , 3 , 4 }
Range = { 2 , 6 , 9 , 12 }
Codomain is rest of other element :
Codomain = A i.e . { 1 , 2 , 3 ...... 14 } .
Thus we get all answers .
Chapter 2
Class 11
Relations and Functions.
Answer :
- Domain = { 1 , 2 , 3 , 4 }
- Range = { 3 , 6 , 9 , 12 }
- Codomain = A = { 1 , 2 , 3 ...... 14 }.
★ Explanation :
Given :
A = {1,2,3 ...... 14}
R = {(x,y): 3x - y = 0. where {x, y ∈ A}.
To Do :
We have to write down its domain, codomain and range.
Solution :
As per given condition we can say,
⇒ 3x - y = 0.
⇒ 3x = 0 + y.
⇒ 3x = y.
∴ y = 3x.
★ Remember -
Now,
Value of x Whether x , y ∈ A
1 → Yes.
2 → Yes.
3 → Yes.
4 → Yes.
5 → No.
6 → No.
7 → No.
⇒ R = {(1 , 3), (2 , 6), (3 ,9), (4, 12)}
Now,
Domain of R :
⇒ {1 , 2 , 3 , 4}
Range of R :
⇒ { 3 , 6 , 9 , 12}
Co - Domain :
Co - Domain of R = A
⇒ { 1 , 2 , 3.....,14}
★ Extra Information :
Domain :
Set of all first elements of the ordered pairs in the relation.
★ Range :
Set of all second elements of the ordered pair in the relation.
★ Co - Domain :
The set that contains all the possible values of a given relation.