Math, asked by itzHYPER, 4 months ago

 \mathfrak{question}

if the sum of first 14 terms pf an arithmetic progression is 1050 and its fourth term is 40, find its 20th term.


no spamz❌​

Answers

Answered by Anonymous
133

\dag\:\underline{\sf AnsWer :}

\frak {\pink{Given}}\begin{cases} \tt{\green{Fourth  \: term \:  of  \: a \:  A.P \:( a_{4})  = 40}}\\ \\  \tt{\blue{20^{th} \:  term  \: of  \: a \:  A.P \: ( a_{20})  = \: ?}} \\ \\ \sf{\orange{Sum \:  of \:  first  \: 14  \: terms  \: S_{14} = 1050}}\end{cases}

\underline{\boldsymbol{According\: to \:the\: Question\:now :}}\\

:\implies \sf a_n= a + (n - 1)d \\

:\implies \sf a_4= a + (4 - 1)d \\

:\implies \sf 40= a + 3d  \qquad...(i)\\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━

\dashrightarrow\:\:\sf S = \dfrac{n}{2} \bigg \lgroup 2a + (n - 1)d \bigg \rgroup \\

\dashrightarrow\:\:\sf S_{14}  = \dfrac{14}{2} \bigg \lgroup 2a + (14 - 1)d \bigg \rgroup \\

\dashrightarrow\:\:\sf 1050  = \dfrac{14}{2} \bigg \lgroup 2a + (14 - 1)d \bigg \rgroup \\

\dashrightarrow\:\:\sf 1050  = 7 \bigg \lgroup 2a + 13d \bigg \rgroup \\

\dashrightarrow\:\:\sf \dfrac{1050}{7}   =   2a + 13d  \\

\dashrightarrow\:\:\sf 150 = 2a + 13d  \\

\dashrightarrow\:\:\sf 75 = a + 6.5d \quad...(ii)  \qquad \bigg \lgroup \bf{Dividing \: whole \:  {eq}^{n}  \: by \: 2} \bigg  \rgroup \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━

\tiny\underline{\frak{Now, from\:   \: eq^n  \: (i)  \: and  \: eq^n  \: (ii)  \: we \:  get :}}

\longrightarrow\:\:\sf 75 - 40 = a + 6.5 d - (a + 3d) \\

\longrightarrow\:\:\sf 35 = a + 6.5 d - a  -  3d \\

\longrightarrow\:\:\sf 35 = 6.5 d   -  3d \\

\longrightarrow\:\:\sf 35 = 3.5d \\

\longrightarrow\:\:\sf d  =  \dfrac{35}{3.5} \\

\longrightarrow\:\: \underline{ \boxed{\sf d  = 10 }}\\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\tiny\underline{\frak{Substituting \:  the \:  value \:  of  \: d = 10 \:  in  \: eq^n \:  (i)  \: we \:  get :}}

\leadsto\sf 40= a + 3d \\

\leadsto\sf 40= a + 3 \times 10 \\

\leadsto\sf 40= a + 30 \\

\leadsto\sf a = 40 - 30\\

\leadsto \underline{ \boxed{\sf a = 10}}\\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\dag\:\underline{\sf 20^{th} \:  term \:  of  \: a  \: A.P} \\

\mapsto\:\:\sf a_{n} = a + (n - 1)d \\

\mapsto\:\:\sf a_{20} = 10 + (20 - 1) \times 10

\mapsto\:\:\sf a_{20} = 10 + 19 \times 10

\mapsto\:\:\sf a_{20} = 10 + 190

\mapsto\:\: \underline{ \boxed{\sf a_{20} =200}}


Ataraxia: Nice ^^
Anonymous: Thank you! ^_^
Answered by eswarivelan
14

Answer:

hiiiiii

Step-by-step explanation:

S 14 =1050

a=10

Sn = n/2[2a+(n−1)d]

1050 = 14/2(2×10+(14−1)d])

1050/7 = 20+14d−d]

150−20=13d

130=13d

d=10

The 20 th term is

a20 =a+(n−1)d

=10+(20−1)10

=10+190

a20=200

Hope it is helpful

Similar questions