Math, asked by BrainlySparrow, 1 month ago


\mathfrak{Question:}
\pink{\bold{\underline{\large{ \:↬\  \textless \ br /\  \textgreater \ Find \:  the \:  cube  \: root  \: of \:  the \:  following :}}}} \:  \:
1. \: \dashrightarrow\  \textless \ br /\  \textgreater \  \:  - 1 \frac{271}{729}
2.\dashrightarrow\  \textless \ br /\  \textgreater \  \: 2  \frac{93}{125}
\hookrightarrow\  \textless \ br /\  \textgreater \  \:  Note:\  \textless \ br /\  \textgreater \ \  \textless \ br /\  \textgreater \  \:
Do not spam❌❌
Only mods, stars or quality answerers only answer the question ✅✅​

Answers

Answered by mathdude500
76

\large\underline{\sf{Solution-1}}

Consider,

\rm :\longmapsto\: \sqrt[3]{ -  \: 1 \: \dfrac{271}{729} }

We know,

 \blue{ \boxed{\bf  \: \sqrt[3]{ - x}  =  -  \sqrt[3]{x}}}

So, given expression can be rewritten as

\rm \:  =  \:  \:  -  \:  \sqrt[3]{1 \: \dfrac{271}{729} }

Now, we reduce this mixed fraction to rational number.

\rm \:  =  \:  \:  -  \:  \sqrt[3]{\: \dfrac{729 + 271}{729} }

\rm \:  =  \:  \:  -  \:  \sqrt[3]{\: \dfrac{1000}{729} }

\rm \:  =  \:  -  \: \dfrac{ \sqrt[3]{1000} }{ \sqrt[3]{729} }

Now,

 \red{\rm :\longmapsto\:Prime \: Factorization \: of \: 1000}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:1000 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:500 \:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:250\:\:}} \\ {\underline{\sf{5}}}& \underline{\sf{\:\:125 \:\:}} \\ {\underline{\sf{5}}}& \underline{\sf{\:\:25\:\:}}\\ {\underline{\sf{5}}}& \underline{\sf{\:\:5\:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

 \red{\rm :\longmapsto\:Prime \: Factorization \: of \: 1000 =  {2}^{3} \times  {5}^{3} }

Now, Consider,

 \red{\rm :\longmapsto\:Prime \: Factorization \: of \: 729}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{3}}}&{\underline{\sf{\:\:729 \:\:}}}\\ {\underline{\sf{3}}}& \underline{\sf{\:\:243 \:\:}} \\\underline{\sf{3}}&\underline{\sf{\:\:81\:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:27 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:9\:\:}}\\ {\underline{\sf{3}}}& \underline{\sf{\:\:3\:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

 \red{\rm :\longmapsto\:Prime \: Factorization \: of \: 729 =  {3}^{3}  \times  {3}^{3} }

Hence,

\rm :\longmapsto\:\:  -  \: \dfrac{ \sqrt[3]{1000} }{ \sqrt[3]{729} }

\rm \:  =  \:  -  \: \dfrac{ \sqrt[3]{ {2}^{3}  \times  {5}^{3} } }{ \sqrt[3]{ {3}^{3}  \times  {3}^{3} } }

\rm \:  =  \:  \:  -  \: \dfrac{2 \times 5}{3 \times 3}

\rm \:  =  \:  \:  -  \: \dfrac{10}{9}

\rm \:  =  \:  \:  -  \: 1 \: \dfrac{1}{9}

\large\underline{\sf{Solution-2}}

Consider,

\rm :\longmapsto\: \sqrt[3]{2 \: \dfrac{93}{125} }

\rm \:  =  \:  \: \: \sqrt[3]{\: \dfrac{250 + 93}{125} }

\rm \:  =  \:  \: \: \sqrt[3]{\: \dfrac{343}{125} }

\rm \:  =  \:  \: \dfrac{ \sqrt[3]{343} }{ \sqrt[3]{125} }

Now,

 \red{\rm :\longmapsto\:Prime \: Factorization \: of \: 343}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{7}}}&{\underline{\sf{\:\:343 \:\:}}}\\ {\underline{\sf{7}}}& \underline{\sf{\:\:49 \:\:}}  \\ {\underline{\sf{7}}}& \underline{\sf{\:\:7\:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

 \red{\rm :\longmapsto\:Prime \: Factorization \: of \: 343 =  {7}^{3} }

Now,

 \red{\rm :\longmapsto\:Prime \: Factorization \: of \: 125 }

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{5}}}&{\underline{\sf{\:\:125 \:\:}}}\\ {\underline{\sf{5}}}& \underline{\sf{\:\:25 \:\:}}  \\ {\underline{\sf{5}}}& \underline{\sf{\:\:5\:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

 \red{\rm :\longmapsto\:Prime \: Factorization \: of \: 125  =  {5}^{3} }

Hence,

\rm \:  =  \:  \: \dfrac{ \sqrt[3]{343} }{ \sqrt[3]{125} }

\rm \:  =  \:  \: \dfrac{ \sqrt[3]{ {7}^{3} } }{ \sqrt[3]{ {5}^{3} } }

\rm \:  =  \:  \: \dfrac{7}{5}

\rm \:  =  \:  \:1 \dfrac{2}{5}

Thus,

\bf :\longmapsto\:(1). \:  \:  \sqrt[3]{ -  \: 1 \: \dfrac{271}{729} }  =  -  \:1 \:  \dfrac{1}{9}

and

\bf :\longmapsto\: (2). \:  \: \sqrt[3]{2 \: \dfrac{93}{125} }  = 1 \: \dfrac{2}{5}

Result Used :-

 \blue{ \boxed{\bf  \: \sqrt[3]{ \frac{x}{y} } \:  =   \: \frac{ \sqrt[3]{x} }{ \sqrt[3]{y} }}}

Similar questions