Science, asked by thapaavinitika6765, 8 months ago

\mathrm{Check\:convergence\:of\:}\sum _{n=0}^{\infty \:}\frac{3}{2^n}

Answers

Answered by guptasant72
1

Answer:

Answer is provided in the picture given above

Attachments:
Answered by Anonymous
1

\mathrm{Apply\:the\:constant\:multiplication\:rule}:\quad \sum c\cdot a_n=c\cdot \sum a_n

=3\cdot \sum _{n=0}^{\infty \:}\frac{1}{2^n}

\mathrm{Apply\:Series\:Geometric\:Test}:\quad 2

\mathrm{If\:the\:series\:is\:of\:the\:form\:}\sum _{n=0}^{\infty }r^n

\mathrm{If\:}|r|<1\mathrm{,\:then\:the\:geometric\:series\:converges\:to\:}\frac{1}{1-r}

\mathrm{If\:}|r|\ge \:1\mathrm{,\:then\:the\:geometric\:series\:diverges}

=\frac{1}{1-\left(\frac{1}{2}\right)}

\frac{1}{1-\left(\frac{1}{2}\right)}=2

=3\cdot \:2

= 6

Similar questions