Math, asked by StarGazer001, 1 year ago

\mathrm{find \: \int \frac{x^{3}}{(x+1)^{2}}dx}

Answers

Answered by Swarup1998
16
\underline{\text{Solution :}}

\mathrm{Now,\:\int \frac{x^{3}}{(x+1)^{2}}dx}

\mathrm{=\int \frac{(x^{3}+1)-1}{(x+1)^{2}}dx}

\mathrm{=\int \frac{(x+1)^{3}-3x(x+1)-1}{(x+1)^{2}}dx}

\mathrm{=\int (x+1)dx - \int \frac{3x}{x+1}dx-\int \frac{dx}{(x+1)^{2}}}

\mathrm{=\int (x+1)dx - 3\int \frac{(x+1)-1}{x+1}dx-\int \frac{dx}{(x+1)^{2}}}

\mathrm{=\int (x+1)dx-3\int dx+3\int \frac{dx}{x+1}-\int \frac{dx}{(x+1)^{2}}}

\mathrm{=\frac{x^{2}}{2}+x-3x+3log|x+1|+\frac{1}{x+1}+C}

\mathrm{=\frac{x^{2}}{2}-2x+3log|x+1|+\frac{1}{x+1}+C}

\text{where C is integral constant}
Answered by Anonymous
2

Answer: Solutions is attached above.........

Step-by-step explanation:

Attachments:
Similar questions