Math, asked by sakshigupta77, 6 months ago

\mathrm{Find \: the \: sum \: of \: the \: infinite \: \: series \:} \\ \\ { \frac{3}{4} + \frac{3.5}{4.8} + \frac{3.5.7}{4.8.12} +...... \infty } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\

Answers

Answered by ITZBFF
128

 \mathrm \red{Let \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: } \\  \\ {  \:  \: S = \frac{3}{4} + \frac{3.5}{4.8} + \frac{3.5.7}{4.8.12} +...... } \\  \\

 \mathrm{Add \:  '1' \:  on \:  both  \: sides}

 \\   ⇒1+S \:  = 1 + \frac{3}{4} + \frac{3.5}{4.8} + \frac{3.5.7}{4.8.12} +.....  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\   {  = 1 +  \frac{3}{1} \bigg( \frac{1}{4} \bigg) +  \frac{3.5}{1.2}  { \bigg(  \frac{1}{4}  \bigg)}^{2}  +  \frac{3.5.7}{1.2.3}  { \bigg(  \frac{1}{4}  \bigg)}^{3}  + ....} \\  \\  \mathrm{ = 1 +  \frac{3}{1!} \bigg( \frac{1}{4} \bigg)+  \frac{3.5}{2!}  { \bigg(  \frac{1}{4}  \bigg)}^{2}  +  \frac{3.5.7}{3!}  { \bigg(  \frac{1}{4}  \bigg)}^{3} + ...} \\ \\ \mathrm{R.H.S \:  \:  is  \: compared \:  with = 1 +  \frac{p}{1!} \bigg( \frac{x}{q} \bigg)+  \frac{p(p + q)}{2!}  { \bigg(  \frac{x}{q}  \bigg)}^{2} + ....}

 \\   \mathrm{Where  \: \:  p = 3;  \: p+q = 5  \: ⇒ q = 2  \:  \: and } \\ \\   \mathrm{ \frac{x}{q}  =  \frac{1}{4}⇒x =  \frac{2}{4}  =  \frac{1}{2}  } \\  \\    \mathrm{\because  1 +  \frac{p}{1!} \bigg( \frac{x}{q} \bigg)+  \frac{p(p + q)}{2!}  { \bigg(  \frac{x}{q}  \bigg)}^{2} + .... =  {(1 - x)}^{ \frac{ - p}{q} } }  \\  \\  \mathrm{ \therefore \: 1+S =   {\bigg( 1 -  \frac{1}{2}  \bigg)}^{  \frac{ - 3}{2} }} \\  \\  \mathrm{1+S \:  =  \:   { \bigg(   \frac{1}{2} \bigg) }^{ \frac{ - 3}{2} } } \\  \\  \mathrm{1+S \:  =  \:  {(2)}^{3/2} } \\  \\  \mathrm{S \:  =  \:  \sqrt{8}  - 1} \\  \\ \boxed{  \red{\frac{3}{4} + \frac{3.5}{4.8} + \frac{3.5.7}{4.8.12} +...... \infty \:  =  \:  \sqrt{8}  - 1}}

Answered by Jaiganesha
0

\mathrm{Find \: the \: sum \: of \: the \: infinite \: \: series \:} \\ \\ { \frac{3}{4} + \frac{3.5}{4.8} + \frac{3.5.7}{4.8.12} +...... \infty } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\

Similar questions