prove it
Answers
Answer:
\mathrm{Laplace\:Inverse\:Transform\:of\:}\frac{1}{x^{\frac{3}{2}}}:\quad \frac{2t^{\frac{1}{2}}}{\pi ^{\frac{1}{2}}}LaplaceInverseTransformof
x
2
3
1
:
π
2
1
2t
2
1
L^{-1}\{\frac{1}{x^{\frac{3}{2}}}\}L
−1
{
x
2
3
1
}
=L^{-1}\{\frac{2}{\pi ^{\frac{1}{2}}}\cdot \frac{\pi ^{\frac{1}{2}}}{2^1x^{\frac{3}{2}}}\}=L
−1
{
π
2
1
2
⋅
2
1
x
2
3
π
2
1
}
\mathrm{Use\:the\:constant\:multiplication\:property\:of\:Inverse\:Laplace\:Transform:}UsetheconstantmultiplicationpropertyofInverseLaplaceTransform:
\mathrm{For\:function\:}f(t)\mathrm{\:and\:constant\:}a:\quad L^{-1}\{a\cdot f(t)\}=a\cdot L^{-1}\{f(t)\}Forfunctionf(t)andconstanta:L
−1
{a⋅f(t)}=a⋅L
−1
{f(t)}
=\frac{2}{\pi ^{\frac{1}{2}}}L^{-1}\{\frac{\pi ^{\frac{1}{2}}}{2^1x^{\frac{3}{2}}}\}=
π
2
1
2
L
−1
{
2
1
x
2
3
π
2
1
}
\mathrm{Use\:Inverse\:Laplace\:Transform\:table}:\quad \:L^{-1}\{\frac{(2n-1)!!\sqrt{\pi }}{2^{ns}^{n+\frac{1}{2}}}\}=t^{n-1/2}
\mathrm{Use\:Inverse\:Laplace\:Transform\:table}:\quad \:L^{-1}\{\frac{(2n-1)!!\sqrt{\pi }}{2^{ns}^{n+\frac{1}{2}}}\}=t^{n-1/2}
=\frac{2}{\pi ^{\frac{1}{2}}}t^{\frac{1}{2}}=
π
2
1
2
t
2
1
=\frac{2t^{\frac{1}{2}}}{\pi ^{\frac{1}{2}}}=
π
2
1
2t
2
1